
DISCOVER 

FORTH 
Learning and Programming j 

The FORTH Language 

Thom Hogan 



DISCOVER 

FORTH 



DISCOVER 

FORTH 
Learning and Programming 

The FORTH Language 

Thom Hogan 

Osborne/ McGrawHill 
Berkeley, California 



Illustrated by 

Mary M. Milewski 

Published by 
Osborne/McGraw-Hill 

630 Bancroft Way 
Berkeley, California 94710 

USA 

For information on other Osborne books, translations and distributors 
outside of the U.S.A., please write Osborne/McGraw-Hill at the above 
address.. 

Discover FORTH: Learning and Programming 
the FORTH Language 

Copyright © 1982 by McGraw-Hill, Inc. All rights reserved. Printed in the 
United States of America. Except as permitted under the Copyright Act of 
1976, no part of this publication may be reproduced or distributed in any form 
or by any means, or stored in a data base or retrieval system, without the prior 
written permission of the publisher, with the exception that the program 
listings may be entered, stored, and executed in a computer system, but they 
may not be reproduced for distribution or publication. 

ISBN 0-931988-79-9 

34567890 HCHC 8909876543 

Text and cover design by Irene Imfeld 



Okay, Dick, you got me into this — now get me out! 



Contents 

Introduction I 
Chapter I: A Description of FORTH 3 
Chapter 2: The FORTH Dictionarq II 

Chapter 3: The Stack 17 
Chapter 4: FORTH Arithmetic 33 

Chapter 5: Using FORTH 41 
Chapter 6: Interpreting and Compiling 55 

Chapter 7: Memorq Manipulations 61 
Chapter 8: Mathematical Possibilities 77 

Chapter 9: Control Structures 87 
Chapter 10: Input and Output 97 

Chapter II: Programming in FORTH 107 
Chapter 12: And So: FORTH 117 

Appendix A: Coding Sheet for FORTH Programming 122 
Appendix B: FORTH-79 Standard — Glossarij of Words 123 

Appendix C: ASCII Character Codes 135 
Appendix D: Suggested Alternatives to the FORTH Sijntax 136 

Appendix E: Error Messages 137 
Appendix F: Some FORTH Extensions 139 

Index 141 



ACKNOWLEDGMENTS 

The author would like to thank Eva Hogan and Dick Milewski for 
their technical and editorial assistance. The publisher wishes to express 
gratitude to Jim Flournoy for his technical review. 



Introduction 

After finishing my first book, the Osborne CP/M™ User Guide1, I 

expected to go back to completing one of the two other book projects I 

had started. 

Instead, I accepted a job at InfoWorld, where I met Dick Milewski. If 

each person has a lookalike somewhere on this planet, I suppose he 

must have a spiritual twin, too. Dick is my spiritual twin. 

Within a few weeks of meeting Dick, I knew that his passion for the 

language FORTH would probably be passed on to me. I listened to 

Dick’s explanation of FORTH’s virtues. I watched as he glibly 

programmed small miracles (he called them “words”) on the North 

Star computer in my office. I was hooked. 

I soon found myself wandering through the aisles of bookstores 

looking for any book that would explain FORTH to me. There weren t 

any. 

It was at about that time that Dick gave me a preliminary release of his 

latest programming project, “The Software Works FORTH. His 

manual helped, as did Byte’s special issue on the FORTH language.2 

Then Dick, sneaky fellow that he is, suggested that one sure way of 

learning about FORTH would be to write a book about it. I was 

hooked again. 

This book is an attempt to put what I've learned about FORTH into a 

coherent, organized introduction that others new to the language will 

appreciate. 

Some of the material here is a tightly structured synthesis of material 

that appears in FORTH programming manuals, the FORTH Interest 

Group’s3 publications, and a few commented programs I have been 

able to obtain from serious FORTH programmers. 

Many of the observations about the FORTH language come from my 

use of FORTH in a major software project. FORTH, however, is one 

'Thom. Hogan, Osborne CP/A/™ User Guide (Berkeley: Osborne/McGraw-Hill, 
1981). 
2August 1980 issue. 
"Forth Interest Group, Box 1105, San Carlos, CA 94070, publishers of a journal 
entitled “FORTH Dimensions.” 

1 



DISCOVER FORTH 

of those elusive languages that defy exact quantifying, so don’t assume 

that what appears in this book is gospel — I’m sure that there are other 

advantages and disadvantages I have not pointed out, other possible 
shortcuts, and other conclusions to be drawn. 

One last introductory comment before getting to the meat of the book- 

I have no particular love for the FORTH syntax, nor am I convinced 

that the definitive FORTH has yet appeared. It’s up to you to create the 

FORTH you need by adding extensions and vocabularies. 

I have tried to restrict myself to the syntax that both standard FORTH 

(FORTH-79) and FIG-FORTH use, but throughout this book I refer 

to logical extensions of the language as if they exist. I will try to point 

out any deviations from the 1979 FORTH standard as I use them. 

Also, since I object to the “technobuzz” that permeates many FORTH 

definitions, you’ll find a suggested alternative to the current FORTH 

syntax in Appendix D. FORTH program listings can be extremely 

difficult to read — especially if the program didn’t use FORTH’s 

flexible “commenting” facilities — and I think that some of my 
suggestions may help alleviate this problem. 

T.H., Palo Alto, 1981 

2 



Chapter ! 

Description of 
FORTH 

“How forcibie are right words!” 
The Bible, Job Vi, 25 

3 



DISCOVER FORTH 

One of the first things you’ll hear anyone say about FORTH is that it is 

not a programming language, but a religion. FORTH programmers 

are often thought of as mystics, hunched over their video displays 

conjuring up micro mumbo-jumbo that somehow manages to make 

the machine behave. FORTH is a cryptic language, to be sure. It is also 

eye-catching. All the exclamation points that dot low-level FORTH 

programs suggest that the language drives programmers to 
exaggeration. 

Another thing you’ll hear about FORTH is that it is easy to write 

programs in it, but almost impossible to figure out what they do 

afterward. One story (most probably apocryphal) tells of a programmer 

who spent six months writing more than 150 screens of FORTH source 

code, only to discover that he couldn’t figure out what the first ten 

screens were for. He tried the program with them — it worked. He took 

them out — it didn’t work. He eventually put them back in, added a 

preface that said something like “change these ten screens at your own 

risk,” and went on to his next project. Actually, most FORTH 

programmers are able to easily read their own code. It is generally 

more difficult to read someone else’s FORTH program than it is to 
decipher your own, however. 

If that weren’t enough, you’ll soon discover that the FORTH 

community has given “names,” complete with correct pronunciations, 

to all of FORTH’s symbolic notation. The logic in these assignments is 

not terribly consistent. You’ll learn, for instance, that the FORTH 

word {!} is pronounced “store” while the FORTH word {R#} is 

pronounced “R-sharp.” On the other hand, {UCASE} is pronounced 
“U-case.” 

This shouldn’t scare you off. You might have heard horror stories 

about FORTH that kept you from closer inspection of the language. 

As you 11 find in the rest of this book, FORTH can be accurately 

described using real English sentences, without magic spells, if one 

ignores the aberrations of those who have used FORTH for too long to 
be considered sane. 

-The Origin of FORTH-- 

FORTH was invented around 1970 by Charles Moore. The inexactness 

of the date stems from the fact that Moore had contemplated and tried 

4 



A DESCRIPTION OF FORTH 

out bits and pieces of FORTH over a number of years before he 

actually fit it all together. Moore used an IBM 1130, one of the first 

fully interactive computers. 

The name FORTH comes from Moore’s conception of his invention as 

a fourth-generation computer language. Because the IBM 1130 

accepted only five character identifiers, Moore shortened fourth to 

“FORTH.” 

In a speech at the FORTH Convention in San Francisco in 1979, 

Moore said that FORTH arose from work he had done at the Stanford 

Linear Accelerator Center and Mohasco. From a number of disparate 
pieces (an interpreter written in ALGOL, the atom concept of LISP, 

and early versions of FORTH coded in everything from FORTRAN to 

COBOL) FORTH eventually appeared as a complete programming 

language at the National Radio Astronomy Observatory (NRAO) in 

Kitt Peak, Arizona. 

During the ensuing years, FORTH continued to evolve as Moore 

continued to expand on his initial programming for the NRAO. By 

1973, Moore was so deluged by requests from astronomers to adapt his 

programming method to their systems that he and several others left 

NRAO to form FORTH, Incorporated. As Moore explained, “It is a 

market we would still be in today, except that there are so few new 

telescopes in the world, and you can’t support a company on that 

market.” 

FORTH’s development since 1973 centers around FORTH, Incor¬ 

porated, and another informal group, the FORTH Interest Group 

(FIG). By 1979, Moore estimated, there were 1000 FORTH pro¬ 

grammers, and that number was doubling every year. In addition, both 

Moore and the FIG think that FORTH is now available on almost 

every central-processing unit in existence. 

-The FORTH Qualities- 

FORTH has several attributes not commonly ascribed to computer 

languages. 

First, FORTH is fast. The design of the language has been optimized 

for speed in many ways. Its rapidity is not surprising, considering its 

origins in controlling telescopes and other real-time devices. 

5 



DISCOVER FORTH 

Second, FORTH is small. It requires little computer support. Most 

FORTH systems require only 8K to 16K of RAM. The disadvantage 

that accompanies this conciseness is FORTH’s lack of built-in 

floating-point arithmetic, string manipulators, and sophisticated disk 

input/output (I/O). Although these features can exist with FORTH, 
they are usually not provided with the basic system. 

Last, FORTH is extensible. If you do not like the words (for now, 

consider these commands) available within a standard FORTH, you 

can create your own. You can take two words and combine them to 

create a new, third one. You can take that newly defined word, combine 

it with one or more other words, and create yet another function. In 
short, FORTH is a language of building blocks. 

-Programming in FORTH-- 

The structure of FORTH is different from that of most languages. 

Thus, programming in FORTH is different than programming in sav 
BASIC or COBOL. ’ 

FORTH defies description as either an interpreter or a compiler. The 

language contains elements of both. On the one hand, you can execute 

FORTH and immediately type words that FORTH recognizes and 

acts on as functions, as if it were an interpreter. On the other hand, you 

can type source code into an editor for reduction into machine 

language and later compilation and execution. With the interpreter 

shell of FORTH, you can also create new functions, which are 

compiled into a dictionary, using the language as an interpreter/ 
compiler combination. 

To gain a full understanding of programming in FORTH, you should 

read this entire book. But for now, the following summary suffices to 

outline basic FORTH programming. Be careful. Some of this informa¬ 

tion is generalized. Refer to material supplied with your FORTH for 
specifics. 

1. Load the FORTH Interpreter. Using your FORTH disk and the 
operating system of your computer, load and execute the FORTH 

interpreter just as you would any other machine-language program. 

2. Create Program Blocks. Using the real-time capabilities of FORTH, 

begin to combine blocks of functions until, eventually, typing only a 

6 



A DESCRIPTION OF FORTH 

short series of words (or even just one) results in the action you desire. 

As you can see from the illustration, programming in FORTH is like 

creating a pyramid of small functions. 

If you want a permanent program, you’ll want to save your coding, so 

substitute the following steps for number two, above: 

3. Load the Editor. Using the editor, create “screens” of FORTH 

source code, essentially, a formatted version of what you would type 

directly into FORTH to create new functions. 

4. Compile the Instructions. In a standard FORT H system, the action 

of simply loading the screens of information into the computer using 

FORTH will compile the source code into an executable function or 

program. Some versions of FORTH (such as SL5 from The Stack- 

works) don’t use the standard FORTH concept of “blocks” of 

information and thus require you to use a predefined word such as 

{FLOAD} to compile FORTH source code. 

Note that the screens of information you load into FORTH can 

contain direct commands. Thus, you can accomplish what would 

normally be impossible in other languages, such as having the program 

invoke itself after compilation. 

7 



DISCOVER FORTH 

5. Use the Compiled Functions. The compiled code now functions 

exactly as if it were part of the overall FORTH interpreter. You may 

thus use your compiled code interactively or use it to build even bigger 
function blocks. 

Again, you should be cautioned that the above descriptions are 

extreme generalizations. The terms “interpret” and “compile” are used 

in a very loose sense, as you will recognize soon enough. 

If you’ve programmed a computer before, however, you’ll have noticed 

that programming in FORTH is bizarrely different. Actually, there is 

more evidence to substantiate the conclusion that programming in 

FORTH is “kinky.” Information is not necessarily stored in variables 

in a rational FORTH program. Instead, we encounter a concept called 

“stack” (basically an area of memory in which the last item stored is the 
first item retrieved). 

Another quirk FORTH programmers live with is that almost all 

operations involving numbers use “reverse Polish notation,” the 

technique of giving the numbers first and then stating what to do with 
them. 

-Using This Book-—— 

It is tempting to write a book about FORTH that tells you what you 

need to know about the language in reverse order of importance. After 

all, this is how you tell FORTH what to do. Fortunately, you’ve been 

saved the agony of reading from back to front, or as a programmer 
might say, “from the bottom up.” 

You must understand two primary components, the dictionary and the 

stack, to use FORTH. These appear in separate chapters immediately 
following this one. 

The fourth chapter describes FORTH’s arithmetic handling reverse 

Polish notation, and the integer-only attributes of FORTH. 

Following these three general chapters are sections that deal with 

specific aspects of FORTH: the use of variables and constants, control 

structures, interface to devices, and memory manipulation. These 

chapters are the heart of this book and should serve as a computer-side 

reference. 

8 



A DESCRIPTION OF FORTH 

The last portion of the book deals with handling FORTH s unique 

attributes and attempts to give you an idea of how to become an 

efficient FORTH programmer. Here I discuss how you can tailor 

FORTH to your general needs, develop working habits that suit the 

FORTH environment, and also tinker with such advanced things as 

the “return stack” and separate vocabularies. 

-Notationol Conventions- 

To help you understand what you’re reading, several conventions will 

remain consistent throughout this book. Every time a reference is 

made to a FORTH word in the text (as opposed to the examples), it 

will be enclosed in curly brackets ({EXAMPLEWORD}). 

Another standard notation is that any special-function key will be set 

off between less-than and greater-than signs (a carriage return would 

be <ENTER> or<CR>, for example). 

And finally, FORTH is used in its generic sense. Although FORTH is 

in the public domain, a trademark has been registered by FORTH, 

Incorporated. When something is stated about FORTH in this book, it 

specifically refers to FORTH-79 (the standardized FORTH) or FIG- 

FORTH (a public-domain version). To the extent that the vocabularies 

match, what is written here concerning FORTH applies to the 

products of FORTH, Inc., and other producers of the FORTH 

language as well. 

You’re now ready to discover FORTH. 

9 



Chapter 2 

The 
FORTH 

Dictionary 

“Suit the action to the u/ord, the u/ord to the action; 
with this special observance, that qou o’erstep not 

the modest of nature.” 
Shakespeare. Hamlet, Act III, Scene II 



DISCOVER FORTH 

This chapter will teach you about the basic structure of FORTH, 

which revolves around a concept called a “dictionary.” You’ll also learn 

about the components that go into the dictionary, FORTH “words.” 

-qc l00|< It Up--- 

In other languages, you tell the computer what to do by entering a 

series of commands or statements. Each command generally performs 

a single function. In almost every computer language, these commands 

are predetermined by the language designer, and you, the user, are 

restricted to those functions for which commands exist. You usually 
cannot delete, substitute, or change the functions. 

FORTH is different. In FORTH, every function has a “word” 

associated with it. The word that is used to move a section of memory 

from one location to another, for instance, is {CMOVE}. For the time 

being, words will be treated much like commands in other languages; 

they each perform a function. Eventually that definition will be 
modified, but for now let it suffice. 

Just like their English counterparts. FORTH words are defined in a 

dictionary. A FORTH dictionary is what is known as a “threaded” or 

“linked list” of variable-length items, each of which defines a word in 

the dictionary. The following is the general format for entries in a 
FORTH dictionary: 

length of name (# of characters) 
name (dictionary entry) 

link pointer (points to next entry) 

code pointer (points to code for the word) 

parameters (a value (as for a variable) or a list of addresses) 

What this generalized format shows is that each dictionary entry keeps 

track of the length of the word, the letters that comprise the word itself, 

a linkage to another dictionary entry, an address to find the machine- 

language code associated with the word, and some parameters. 

When FORTH needs to perform the actions you request by typing a 

valid word, it looks it up in the dictionary. What happens next depends 

upon whether the word you typed represents a constant, a variable, or 

a valid action. The differences are primarily in what code the code 

pointer points to, and what information is stored in the “parameter 
field” of the dictionary entry. 

12 



THE FORTH DICTIONARY 

-What’s in a Word- 

Most dictionary entries for FORTH words contain lists of memory 

addresses that point to other FORTH words. Only a few basic 

FORTH words actually contain machine language code and nothing 

else. The dictionary parameter field contains a list of addresses that 

represent other FORTH words that FORTH executes in sequence. 

The practical effect of such a list is to make FORTH “thread” its way 

back and forth through memory, executing words in a user-specified 

order. This is one of the attributes of FORTH that make it a “threaded 

language.” 

Here’s an example. Suppose for a moment that you had three machine- 

language programs, all short, that performed the following three 

specific functions: 

1. Retrieve a value stored somewhere in memory, 

2. Subtract one from the value, 

3. And see if the result is zero. 

In FORTH, these three functions may be combined into one meta¬ 

function called {DTZ} (which stands for Decrement and Test for 

Zero). The word (meta-function) {DTZ} does not have any machine 

code located at the address associated with it, but instead has three 

addresses of the separate routines. 

The flexibility that results from composing a word out of a series of 

other words is impressive. 

Indeed, this is one of the primary attributes of FORTH. You can create 

new words by using already defined words. FORTH actually has the 

three routines listed above. They are called 

1. {@}, which “fetches” a value from memory 

2. {1-}, which subtracts one from the value retrieved 

3. {0=}, which checks to see if the result was zero. 

You could, therefore, create the function {DTZ} by simply telling 

FORTH to execute {@}, {1-}, and {0=}, in that order, every time it 

encounters {DTZ}. 

13 



DISCOVER FORTH 

-Bargain Building Blocks- 

If you understood the description of what a word is, you should 

immediately grasp that FORTH is a “building-block” language. You 

use the vocabulary of words of standard FORTH to build larger 

metawords, which you can use to build meta-metawords, and so on. 

The concept of programming in FORTH is building a pyramid. At the 

bottom of this pyramid you have all the available FORTH words. 

Each successive layer of the pyramid is a distillation, a combination of 

the blocks of the previous one. Ultimately, the top of the pyramid is a 

single word that would command an entire sequence of events. This 

sequence of events is what is normally called a “program.” 

Admittedly, this is a dangerous oversimplification. Only small pro¬ 

gramming tasks are actually like pyramids. In reality, a large 

application program might end up looking like a number of pyramids, 
with some overlapping. 

The pyramid image is a useful one, nonetheless, because it immediately 

forces you to recognize that a good FORTH program relies heavily on 
the “base” levels you construct. 

-:-Webster’s, Oxford, Funk & Wagnall- 

As if the flexibility built into the structure described above were not 

enough, multiple vocabularies are possible in the FORTH dictionary. 

The primary advantage of multiple vocabularies is to allow you to 

switch the meaning of a word or set of words, depending upon the 

context in which you are using it. Words, in FORTH as in English, can 

have multiple meanings. The multip'e vocabularies of FORTH allow 

you to fit meanings to the contexts in which they occur. 

While multiple vocabularies aren’t dealt with in detail here, as you 

become a better FORTH programmer you’ll want to investigate this 
feature of the language more fully. 

You haven’t learned how to do anything in FORTH yet. What you 

have learned is how FORTH’s structure and organization create a 

unique environment for programming. 

14 



THE FORTH DICTIONARY 

Specifically, you now know the following basic principles: 

• In FORTH, you invoke functions by typing words. In addition, 

many FORTH words invoke other FORTH words as part of their 

execution. 

• FORTH words are defined in a dictionary, essentially in a linked list 

of words. 

• A dictionary entry for a word consists of the length of the word 

name, the word name, the address of the previous word, the address of 

the machine code to be executed when the word is invoked, and some 

miscellaneous parameters (generally a list of addresses of other words 

to execute). 

• A word is really just a list of instructions to perform. 

• You combine words to create new ones. 

• Programming in FORTH is the process of defining words. 

• Simple FORTH programs are constructed like pyramids, each layer 

building on the previous one. 

• Multiple dictionaries are possible and are used to change the 

“meaning” of a word, depending upon context. 

15 



Chapter 3 

“ ‘It’s a poor sort of memorij that onlq works 
backwards,’ the Queen remarked.” 

Lewis Carroll, Through The Looking Glass 

17 



DISCOVER FORTH 

This chapter explains FORTH’s unusual method of storing temporary 

information, called the “stack.” You’ll learn how FORTH allows you 

to manipulate a pile of information, albeit in a backward fashion. 

-FORTft and the Stack- 

Programs need to keep track of many details as they execute. This may 

mean simply keeping track of the characters you type, or keeping track 

of the results of calculations the programs need internally. 

Traditionally, most computer languages use a concept called “varia¬ 

bles” to store information a program needs. A variable is an area of the 

computer’s memory reserved for storage and referenced by a name (the 
“variable name”) you specify. 

FORTH allows the use of variables, but, for the most part, an efficient 

FORTH program uses the stack for temporary storage of information. 

A stack is like a pile of plates. You always put additional plates on the 

top of the pile, and if you must take a plate off the pile, you take it off 
the top. 

18 



THE STACK 

A FORTH stack is a pile of information. You add information to the 

top of the pile, one piece at a time. When it comes time to get 

information from the pile, you take it off the top, one element at a time. 

This concept is sometimes referred to as a LIFO process (the acronym 

stands for Last In, First Out). 

-Whi| Use a Stack- 

Since FORTH allows variables, what advantage might there be in 

using the stack for storing temporary information? There are a number 

of possible answers to this question. 

1. Speed. The stack offers two speed advantages. The first comes when 

you are using FORTH in the interpretive mode, and the second has to 

do with the inherent design of FORTH. 

When acting as an interpreter, FORTH must figure out the location of 

variables by looking them up. Upon completion of this operation, a 

second step replaces the address of the located variable with the 

contents of the variable. Using the stack in most instances is a single- 

step process — one step to put something on or one step to take 

something off. 

The inherent design of FORTH also plays a part in speed. Many of the 

words in the standard FORTH vocabulary expect to deal with 

numbers on the stack. Use of variables, although possible, often means 

that the programmer generates extra, unnecessary code. 

Also, just because you retrieve the value stored in a variable doesn’t 

mean that any new calculated value automatically will be stored in its 

place, as with most languages. The extra time that might result in 

trying to debug code that fails to update a variable correctly can also be 

considered a detriment to overall programming speed. 

2. Convenience. Sometimes information is of a transient nature, and it 

is not worth going through the process of giving it a name and 

permanently storing it in memory. For example, suppose that your 

program needs to know which of three possible choices you want 

executed. The program will use the character you type to select which 

selection of code to run. But after that, the program will never use that 

character again. 

If you put the character on the stack instead of storing it in a variable, it 

19 



DISCOVER FORTH 

remains immediately accessible and is subsequently discarded after 

use. 

3. Sequential processing. Sometimes several pieces of information 

need to be processed in sequence. You might have noted that the 

FORTH stack stores information in reverse sequential order. 

To give you a simplified example, suppose that you type the numbers 1 

through 10 and that each has been stored on the stack as you typed it. If 

you wanted to delete the last two numbers, you would simply remove 

the last two entries from the stack. 

Using a stack to store information has other advantages. Recursion of 

information is one. The term “recursion” basically refers to the ability 

to determine a succession of elements (such as stack elements) by 

referring to one or more of the elements already generated. 

Even though recursion may sound complicated, it really is simple. 

You’ve probably seen a picture that shows a man sitting in front of a 

television, whose picture shows a man sitting in front of a television, 

and so forth. That is just one form that recursion may take. 

20 



THE STACK 

To cite one simple example of recursion using the stack, pretend for a 
moment that you wished to generate the powers of two (2*2 is 4,2x4 is 
8, 2x8 is 16, and so forth). You could do so in FORTH with the simple 
word {POWERS}. 

[: POWERS dup 2 . ;] 

Powers multiples the top stack element by two and leaves the result on 
the stack. 

To cite another example of how using a stack is different from using 
variables to store information, a common problem associated with 
using variables is one called “garbage collection.” This inelegant term 
refers to the process of reclaiming memory space no longer needed, as 
in the case of a variable that is no longer in use (or when the 
information contained in the variable uses less space than the data 
stored there previously). 

The stack concept has its own built-in garbage collection. When you 
remove an item from the stack for use, its space is reclaimed 
automatically by FORTH. This results in two advantages, one of.speed 
(some garbage-collection routines in other languages take an immense 
amount of time — to the computer — to function) and one of 
convenience (you are not left with any information in memory that you 
might later have to contend with). 

21 



DISCOVER FORTH 

-U/hat’s in the Stack- 

In almost every existing version of FORTH, each element of the stack 

consists of two bytes of information. In other words, each element 

consists of 16 bits of information. 

Information is normally stored in a single-stack element in two ways. 

The first is called a 16-bit signed number, and the second is called a 

16-bit unsigned number. 

You'll learn more about the distinction between signed and unsigned 

numbers later, but the basic difference to a programmer lies in the 

range of numbers each can express. 

TYPE RANGE 
(1 5 bits + sign) 
signed numbers -32768 to 32767 

(1 6 bits) 
unsigned numbers 0 to 65535 

Since these ranges are extremely limited, another method of stored 

information on the stack is also implemented in FORTH. “Double 

numbers” are numbers that consist of two FORTH stack elements 

considered together (for example, two 16-bit elements or 32 bits). 

22 



THE STACK 

One 32-bit stack element 

Double numbers can also be signed and unsigned. 

type range 
signed double numbers -2147483648 to 2147483647 

(31 bits + sign) 
unsigned double numbers 0 to 4294967296 

(32 bits) 

FORTH does not change the size of the stack to deal with double 

numbers. Instead, a double number is made up of two stack elements. 

You must keep track of which numbers on the stack are double and 

which are single elements, and use the appropriate functions to 

manipulate them. 

It should also be mentioned that there are ways to manipulate halt an 

element on the stack at a time. Half ot 16 bits is a normal byte of 

information. 

In short, the FORTH stack consists of 16-bit elements, but there are 

ways for you to make FORTH deal with either two elements at a time 

(double numbers) or only half an element at a time (bytes). Unfor¬ 

tunately, some of the useful stack-manipulation words FORT H 

contains cannot be used on bytes of information. FORI H can deal 

directly only with the top byte on the stack at a time (although you can 

always invent your own functions to deal with the second byte from the 

top, should you need direct access to it). 

-Representing the Stack- 

Since the stack is a key ingredient in FOR UH, you’ll want to be able to 

see exactly how the stack is manipulated throughout the text. 

A visual method will be used to illustrate what you type in FOR I H and 

its effect on the stack. Since you can do many things with elements of 

the stack, it is important that you recognize that almost every function 

can be reduced to one of the following basic building blocks: 

23 



DISCOVER FORTH 

Stack 

( Add To Stack } 

YOUR INPUT ELEMENT1 ELEMENT2 

\ \ \ 
ELEMENT! ELEMENT2 ELEMENT3 

What you type (if it isn’t a FORTH word) becomes the new ELE¬ 

MENTS and everything that was on the stack is pushed back one. If 

you typed a FORTH word, the result of that word’s function will be 

added to the top of the stack. 

Stack 

TOP *- — BOTTOM 

j Remove From Stack | ELEMENT1 ELEMENT2 ELEMENT3 

/ 
ELEMENT! ELEMENT2 

What you typed caused one element to be removed from the stack, with 

everything else moving up one position. 

Stack 

TOP*- BOTTOM 

Combine or Calculate } ELEMENT! ELEMENT2 ELEMENT3 

y s 
ELEMENT1 ELEMENT2 

24 



THE STACK 

Your typing causes the combination of two (or more) of the elements 

on the stack. An example would be typing {+}. This tells FORTH to 

take the top two elements off the stack, add them together, and store 

the result as the new top element. 

Stack 

{ Swap Elements } EL E T1 ELEMENT2 ELEMENT3 

i 
ELEMENT! ELEMENT2 ELEMENT3 

In this example, FORTH has swapped two elements on the stack while 

leaving a third untouched. (Some FORTH operations swap more than 

two elements, but the principle shown above remains the same.) 

A form of the previous notation will be used throughout this book. An 

example of a real series of FORTH operations follows. 

Stack 

YOU TYPE TOP <' . .- BOTTOM 

3 

\ 
6 3 

\ \ 
+ 6 3 

9 

(Note: Appendix A is a blank sheet of coding paper that utilizes this 

scheme.) 

25 



DISCOVER FORTH 

You should note that this book uses a different method of representing 

the stack than that which you’ll find in most FORTH manuals. 

Generally, the FORTH stack is represented with the top on the right 
and the bottom on the left. 

That’s fine, but you’re reading from left to right and expecting infor¬ 

mation in the order you’ll use it to form conclusions. The representa¬ 

tion used in this book should help simplify your learning process. 

Afterward, you can learn to think backward like most FORTH docu¬ 
mentors. 

A second convention you won’t find used in this book is the “short¬ 

hand” method (found in most FORTH manuals and the Glossary of 

this book) to represent what elements of the stack are used by what 

words. This shorthand format looks something like the following: 

elements WORD elements 

* ^ 

the stack before the stack after 

WORD is executed WORD is executed 

This convention uses the following abbreviations: 

n = 16-bit signed number 
u = 16-bit unsigned number 
d = 32-bit signed double number 

ud = 32-bit unsigned double number 
addr = memory address (16 bits) 
byte = byte value (8 bits) 

c = seven-bit ASCII character in a one-byte field 
flag = Boolean (true/false) value 

Thus, a word that takes two numbers off the stack and replaces them 

with a third would be represented like the following: 

n2 nl WORD n3 

This means that the word uses “nl” and “n2” (in that order) to create 

“n3,” which becomes the top element in the stack. 

The shorthand notation, helpful for reference purposes, is used only in 

the appendices of this book. The simplification gets in the way of 

understanding what is happening for newcomers to FORTH, so the 

expanded representation previously described will be used throughout 

26 



THE STACK 

the text. An expanded representation of the example word shown 

earlier looks like the following: 

YOU TYPE 

WORD ELEMENT1 ELEMENT2 ELEMENT3 

y s 
ELEMENT1 ELEMENT2 

This representation graphically shows where each element on the stack 

goes during the operation and should prove less confusing to 

newcomers to FORTH. 

-Some Definitions—- 

A great number of predefined FORTH words manipulate the stack. As 

you will learn eventually, you can combine these words to create new 

stack manipulations. For now, however, concentrate on learning the 

following basic manipulators: 

(Description) WORD 

Slack 

j DROP} removes one DROP X Y Z 
element from / / / 
the stack ^ m K 

N1 DROP y 2 

{ SWAP ( exchanges SWAP 
the top two 
elements on 
the stack 

N2 N1 SWAP N1 N2 

X Y 2 

X i 
Y X Z 

{ DUP} duplicates DUP 
the top element 

j on the stack 
N1 DUP N1 N2 

X Y 

X \ 
X X Y 

27 



DISCOVER FORTH 

(Description) WORD 

Stack 

{ OVER ) duplicates the 
second element 
on the stack 

N2 N1 OVER N2 N1 N2 

OVER X Y 

X 
Y X 

\ 
Y 

{ + — * ) or {/ } performs 
the arithmetic 
function specified 
on the top two 
elements on stack 

N2 N1 + N(1+2) 

+ X Y 

X 
X+Y Z 

Z 

Other FORTH words allow you to manipulate the 32-bit double words 

(two stack elements) in one step. An example of this might be the 

following: 

(Description) WORD 

Stack 

{ 2DUP } duplicates the 
double number 
on the stack 

D1 2DUP D1 D2 
N2 N1 2DUP N2 N1 N2 N1 

2DUP A B X Y 

A B A 8 X Y 

Appendix B is a list of FORTH words and their effects on the stack. 

You’ll find that new words will be introduced throughout this book as 

they prove necessary, but, if for some reason you need to find the 

action of a specific word before it is introduced, check Appendix B. 

-Where Is the Stack- 

In most versions of FORTH, the stack starts at the top of available free 

memory and works its way down in memory as the stack grows. An 

internal (to FORTH) pointer is kept that stores the address of the 

current top stack entry. 

28 



THE STACK 

Unfortunately, some stacks grow up instead of down. You’ll have to 

check your manual to see which yours does. 

However, most versions of FORTH provide you with a word {SP@} 

— that, when executed, places the stack’s old address on the stack. If 

that sounds confusing to you, examine the following illustration: 

Stack 

SP@ ELEMENT1 ELEMENT2 

\ \ 
j ADDRESS ELEMENT2 ELEMENTS 

t 
The address of previous ELEMENT! 

In your system’s memory, the above situation would look something 

like this: 

29 



DISCOVER FORTH 

Okay, but where’s the bottom of the stack? To solve this, you use the 

FORTH words {SO} and {@}. Executing these words in order will place 

the address of the initial value (that is, the first memory location used 

for the stack) of the stack onto the stack. The illustration of its use 

looks just like that of {SP@}, with the substitution of {SO} {@} for 

{SP@}. 

-Stacks of Characters- 

So far, the fact that the stack is of use only for storing numbers has 

been implied. That’s true, but remember that computers internally 

represent characters as binary numbers (see Appendix C). 

Numbers are stored on the stack the way computers generally deal with 

them (that is, in binary form). If you tried to print a binary number 

directly onto your display, it wouldn’t work, and you’d most likely get 

some nonsensical display. Wouldn’t it be nice if you could print out the 

numbers stored on the stack as Arabic numbers? Well, you can. 

To get the data off the stack and onto the screen in numbers you 

understand, you use the “dot” command ({.}). Typing a period will have 

the same result as the {DROP} word does, but it will also display the 

Arabic number that was on the stack on your console display. 

Sometimes you want to have the ASCII equivalent of the number 

displayed on your screen (as in the case of letters). To do this, you use 

the {EMIT} function. If there is a decimal 65 on the stack and you type 

{EMIT}, an “A” will be displayed on your console device because 65 is 

the decimal value for an “A” using the ASCII encoding scheme (see 

Appendix C). If you typed {.} instead of {EMIT}, you would see the 

number “65” displayed on your screen, not the letter “A.” 

-Summarq- 

Later in this book you'll learn other ways to get things on and off the 

main FORTH stack. But for now, let’s summarize what you’ve learned 

so far: 

• The stack is a pile of information. 

• Using a stack has advantages, including speed, convenience, array 

processing, recursion, and garbage collection. 

30 



THE STACK 

• Stacks usually consist of 16-bit elements which can be signed 

numbers (-32768 to 32767) or unsigned numbers (0 to 65535). 

• Sometimes stacks contain double numbers (32 bits) which can be 

signed (-2147483648 to 2147483647) or unsigned numbers (0 to 

4294967296). 

• The basic stack manipulations are adding something to the stack, 

removing something from the stack, combining elements on the stack, 

and exchanging elements on the stack. 

• The stack often starts at the top of memory and works its way down, 

while versions do the opposite. 

In addition, you’ve run into several stack-manipulation words includ¬ 

ing the following: 

• DROP removes top element from the stack. 

• DUP duplicates the top element on the stack. 

• OVER duplicates the second element on the stack. 

• 2DUP duplicates the top two elements on the stack. 

• SWAP exchanges top two elements on the stack. 

• + adds the top two elements on the stack. 

• - subtracts the top element from the second element on the stack. 

• * multiplies the top two elements on the stack. 

• / divides the second element by the top element on the stack. 

• SP@ places the address of the top element of the stack onto the 

stack. 

• . displays in Arabic numbers on the display the binary value of the 

top element on the stack. 

• EMIT displays the top element on the stack according to its ASCII 

equivalent. 

Last, you’ve seen how this book will display the effect of the stack and 

FORTH words on the stack, and how it may be represented in the 

manual that accompanies your version of FORTH. 

31 



-Chapter 4 

FORTH 
Arithmetic 

“Two plus two isn’t possible in FORTH.” 
anonymous 

33 



DISCOVER FORTH 

By the time you’ve finished this chapter, you should be well versed in 

the unusual method with which FORTH handles arithmetic operations. 

-The Post-Fix fs In--— 

If you learned math in the traditional manner, you were probably 
brainwashed into thinking that two plus two is four. 

Computers don’t believe that. To a slice of silicon, most arithmetic 

operations are performed in something commonly known as “post-fix” 
notation. 

Post-fix rules say that you must state the operands before stating the 

operations to be performed. In other words, you state the numbers and 
then the operation to be performed. 

2 + 2 becomes 22 + 

The fact that the mathematical operation is specified last led to the 
name post-fix. 

Actually, post-fix notation is also referred to as reverse Polish 

notation. As “The Software Works FORTH” manual explains, the term 

“Polish” comes from “an attempt by a largely English-speaking 

computer science community to credit the origins of the technique 

without undertaking the risky task of attempting to pronounce [the 

name of the inventor, Polish logician Jan] Lukaciewicz.” 

Lukaciewicz’s system is used quite extensively today in electronic 

equipment, most notably in Hewlett-Packard calculators. Pascal 
compilers, and, yes, FORTH. 

-Getting a Post-Fix or Forget Parentheses- 

If you flunked high school algebra, you may be in real trouble when 

you begin calculating with FORTH. Then again, it may help. 

Perhaps you remember some of the following rules of evaluating 
algebraic expressions: 

1. Do all multiplication and division before addition and subtraction 

operations. 

34 



FORTH ARITHMETIC 

a+b+c*d+e+f+g 

t 
calculated first 

2. Calculate the expressions in the innermost set of parentheses first. 

(A + (B*C + (D/E))) 

Is 
calculated first 

Continue working out, one set of parentheses at a time. 

3. Work from left to right if none of the above rules applies. 

a+b+c+d+e 

t 
calculated first 

Using the rules listed above, if you were given the expression 

(24*5)/2-5+10 

to calculate, you’d perform the following steps: 

1. multiply 24 times 5 (subtotal equals 120) 

2. divide by 2 (subtotal equals 60) 

3. subtract 5 (subtotal equals 55) 

4. add 10 (total equals 65) 

In the language BASIC, this calculation could be stated in the 

following manner: 

24 * 5 /2 - 5 + 10 

Note that the operators appear between the numbers they work with. 

FORTH’s reverse Polish notation changes the way you write the 

operators. In FORTH the same calculation would appear as 

24 5 * 2 / 5 - 10 + 

This is sufficiently different so that you might want to have 

1 24 5*2/5-10+ 24 and 5 are the first numbers to work with; 

multiplication is the operation to perform. 

35 



DISCOVER FORTH 

2. 24 5*2/5-10+ The result of the previous operation and 2 are 

the numbers to work with; division is the operation to perform. 

3. 245*2/5^-10 + The result of the previous operation and 5 are 
the numbers to work with; subtraction is the operation to perform. 

4. 245*2/5-10+ The result of the previous operation and 10 are 

the numbers to work with; addition is the operation to perform. 

If you know a little about FORTH, you’ll know that the numbers have 

been rearranged from the way most FORTH programmers would state 

the equation. Just as with regular algebraic mathematics, there are 

several ways to write the same functionally equivalent calculation. 

You’ve been intentionally showm the calculations in a rather logical 

fashion. FORTFI programmers generally leave numbers strewm all 

over the stack and put together a string of operators at the last minute 

that miraculously perform the calculation. Just so that you game 

lovers will have something to scratch your head about, here’s a sample 

of the way a typical FORTH programmer might tackle a more 
involved expression: 

algebraic: 25 + 6 + 4*(5 + 3+1 *311) 
FORTH: 25 6+453 + 1 311 * + * + 

Notice the way the four operators pop up at the end of the equation. 

Since the common operators of addition, subtraction, multiplication, 

and division all work on two numbers at a time in FORTH, it seems 

curious that four operations w'ouldjust sit there by themselves. (HINT: 

If you haven’t figured it out yet, read the next chapter and carefully 

plot out what’s on the stack at any given moment during the above 

calculation.) 

Actually, a veteran FORTH programmer probably wouldn’t have 

made the direct conversion between algebraic and post-fix notation 

shown above. Instead, he or she would have written something like the 
following: 

2564531 311 *++*++ 

After programming in FORTH for a while, you’ll most likely develop 

similar tendencies. 

36 



FORTH ARITHMETIC 

-It’s His FORTH Operation, Doctor- 

You’ve been briefly introduced to the common arithmetic operators. In 

fact, you shouldn’t have any trouble recognize {+}, {-}, {*}, and {/} as 

representing addition, subtraction, multiplication, and division. 

Each of the four basic operators works in the same manner, combining 

two stack elements as presented in the last chapter. You 11 remember the 

basic form was the following: 

Stack 

YOU TYPE TOP 4- -— BOTTOM 

OPERATOR ELEMENT1 ELEMENT2 ELEMENT3 

/ 
ELEMENT1 ELEMENT2 

Let’s modify that from its general form to a more specific one. 

Stack 

YOU TYPE TOP - - BOTTOM 

)+,-,*.! or|/) NUMBER 1 NUMBER2 NUMBER3 

y / 
NUMBER’S NUMBER2 

This means that the specified operation combines the top two numbers 

on the stack, resulting in a new single number on the top of the stack. 

Everything else on the stack moves up one position. 

The result of a division — {/} — is sequence dependent (what divides 

into what?); in FORTH, a division is performed by dividing the second 

number in the stack by the first. 

A special warning: Each of the basic operators assumes that the 

numbers on the stack are single numbers, signed or unsigned. If you’ve 

mixed in some double numbers, read on. 

37 



DISCOVER FORTH 

-U/hot’s the Point--- 

So far. you’ve only learned about single-integer numbers. You'll 

remember, however, that something called “double numbers” was 
mentioned in an earlier chapter. 

In most versions of FORTH, the way you tell the language to use 

double numbers (32 bits) is to type a decimal point in the number. It 

doesn’t matter where the decimal point is, as standard FORTH uses 
only integer numbers for calculations. 

Thus, the following numbers are all the same in FORTH: 

19.81 1.981 00000.1981 

-Double-Number Operators—- 

T he operators for double-number calculations are different from those 
already mentioned for single numbers. 

Instead of using {+}, double numbers use {D+} for addition. The 

subtraction of double numbers requires a {D-} instead of a {-}. Double 

numbers have no operators for multiplication or division. 

So that you can compare double-number operations to those of single 

numbers, here’s what the stack representation looks like: 

Stack 

YOU TYPE TOP «--— BOTTOM 

D+ or D- NUM1-NUM2 NUM3-NUM4 

X 
NUM1-NUM2 

The linking (hyphens) between numbers on the stack in this representa¬ 

tion signifies that these are double numbers (which take up two stack 
elements instead of one). 

FORTFI doesn’t remind you which numbers on the stack are double 

and which are single, so throughout this book every single number will 

be shown, with double numbers indicated by linking two singles 
together, as in the above example. 

38 



FORTH ARITHMETIC 

-Mixed Numbers, Anqone- 

It is possible to mix single and double numbers in several arithmetic 

operations. 

You could, for example, multiply two single numbers together and 

store the result in a double number. The operator for this procedure is 

called {M*}. 

YOU TYPE 

Stack 

M* NUMBER 1 NUMBER2 NUMBER3 

Y 
NUMBER 1-NUMBER2 NUMBER3 

t 
a double number resuit 

Another “mixed-mode” operation is called {M/}, which means to 

divide a double number by a single number. This is a special operation 

because, unlike with the other integer operations in FORTH, both the 

quotient (the number to the left of the decimal point) and the 

remainder are left on the stack as single numbers for you to use. 

YOU TYPE 

Stack 

_ bottom 

M/ NUMBER1 NUMBER2- -NUMBERS 

X 
QUOTIENT REMAINDER 

There are other mixed-mode operations, and some versions of 

FORTH have extended the language by adding still more. For now, 

these operations should be enough to get you started. 

39 



DISCOVER FORTH 

--Words for the Operators--- 

So far the expression “operator” has been used to refer to arithmetic 

functions to be performed upon two numbers. This has been done so 

that you will understand that a mathematical calculation is taking 
place. 

In actuality, each of the operators described so far in this chapter is a 

FORTH word (that is, executable function). Keep this in mind, 

because you’ll need this concept when you learn more about words and 
their uses in the next chapter. 

-Your Number’s Up- 

You’ve now examined the basic concepts of FORTH arithmetic. If you 

think back to what you’ve read, you should recognize the following key 
information: 

• Post-fix (or reverse Polish notation) always states the mathematical 

operation after the numbers to be acted upon have been stated. 

• Traditional algebraic notation allows complex formulas to be 

expressed out of order; FORTH notation requires that one operation 

be done at a time; thus, complex formulas generally are written in the 
order of calculation. 

• Double numbers are 32 bits (two stack elements) in length and are 
created by using a within a number. 

• Mixed-mode operations are calculations that use both single and 
double numbers. 

• You should also now recognize the following FORTH words 
introduced in this chapter: 

Word Operation 

+ single-number addition 
single-number subtraction 

* single-number multiplication 
/ single-number division 
D+ double-number addition 
D- double-number subtraction 

M* mixed-mode multiplication 
M/ mixed-mode division 

40 



Chapter 5 

Using 
FORTH 

“ . . . and stringing pretty w/ords that make no sense.” 
Browning, Aurora Leigh, Book I 

41 



DISCOVER FORTH 

It’s time to stop reading about FORTH and begin to use it. In this 

chapter, you'll be introduced to some basic principles, which, with 

what has already been presented, should allow you to begin making 

FORTH work for you. 

-Venturing FORTH- 

If you have a version of FORTH for your computer, now’s the time to 

get it out and begin to use it. If you don’t have a version of FORTH 

handy, at least use a piece of paper to keep track of the stack. 

It’s impossible to tell you exactly how to get FORTH running on your 

computer, because there are so many different computers and versions 

of FORTH. Make sure you know how to get FORTH into the memory 

of your computer, waiting for commands. Usually, this involves typing 

one of the following statements, or something similar: 

FORTH 
GO FORTH 

RUN FORTH 
LOAD FORTH 

Most versions of FORTH will identify themselves when they have been 

properly loaded into memory and are executing correctly. You’ll 

probably see something like 

Mythical FORTH Version 1.1 

Ok 

42 



USING FORTH 

The “OK” informs you that FORTH is ready and waiting for you to tell 

it what to do. At least one version of FORTH, SL5 from the Stack- 

works, uses the prompt “>” instead. 

You’re ready to begin. 

-Stack ‘Em Up and Pull ‘Em Off- 

One thing you need to know is how to get things on and off the stack. 

Remember that the stack will hold only numbers. 

To put something on the stack, simply type the number you want 

stored there. 

Mythical FORTH Version 1.1 

Ok 

32<CR>Ok 

In the previous example, you typed a 32 followed by a carriage return 

(the convention of representing the use of the carriage return key 

“<CR>” will be used throughout this book). FORTH replied “OK” to 

indicate it was ready for the next command. If you were to look at the 

stack now, you would find that there was one item on it, a “32.” 

Remember that the 32 is stored in binary form, using 16 bits (two bytes) 

of memory space. 

In that example, two other conventions were used in addition to that of 

the “<CR>” representing your pressing the carriage return key. Those 

conventions are that anything FORTH types will appear in normal 

lettering, and anything you type will appear underlined. 

43 



DISCOVER FORTH 

You could continue to put items on the stack by entering more 

numbers. You do not have to enter a carriage return after each one. 

FORTH recognizes the different numbers only if they are separated by 
spaces, however. 

Mythical FORTH Version 1.1 

Ok 

32<CR>Ok 

14 12 13 1 10000 1 <CR>Ok 

In this example you have entered six more numbers, all of which are 

now on the stack. If you were to take a snapshot of the stack right now, 

it would look like the following: 

TOP 1 
10000 

1 
13 
12 
14 

BOTTOM 32 

Getting numbers onto the stack is easy, but there are numerous ways to 

get them off. 

If you want FORTH to parrot the number on the stack (that is, recite it 

exactly as you entered it), you use a period — {.}, called a “dot” — to get 

numbers off. 

44 



USING FORTH 

Mythical FORTH Version 1.1 

Ok 

32<CR>Ok 

14 12 13 1 10000 1 <CR>Ok 

,<CR>1 Ok 

Now, you have typed a dot followed by a carriage return. FORTH has 

“popped” the top element off the stack and displayed its value on your 

console display. The stack now contains only six elements, since you’ve 

removed the seventh one. 

If you’re wondering about double numbers, you can retrieve them, too, 

in a similar fashion. To remove and display the top double number on 

the stack (two stack elements), you use {D.}—called “D-dot” — 

instead of the dot command listed previously. 

-A Bit of Character- 

The answer is “yes,” characters can be manipulated. The secret is the 

fact that characters are stored internally as a code by the computer. 
Can you get them on and off the stack, too? 

Specifically, FORTH uses ASCII code to store characters. Given a 

chart that shows all the characters and their values in ASCII, you can 

enter and remove letters and special characters. Table 5-1 contains a 

partial listing of ASCII-coded characters. 

45 



DISCOVER FORTH 

TABLE 5-1. PARTIAL ASCII CHART1 

33 = ! 34 = " 35 = # 36 = $ 

37 = % 38 = & 39 = • 40 = ( 

41 =) 42 = * 43 = + 44 = , 

45 = - 46 = . 47 = / 48 = 0 

49 = 1 50 = 2 51 = 3 52 = 4 

53 = 5 54 = 6 55 = 7 56 = 8 

57 = 9 58 = : 59 = ; 60 = < 

61 = = 62 = > 63 = ? 64 = @ 

65 = A 66 = B 67 = c 68 = D 

69 = E 70 = F 71 = G 72 = H 

73 = 1 74 = J 75 = K 76 = L 

77 = M 78 = N 79 = 0 80 = P 

81 = Q 82 = R 83 = S 84 = T 

85 = U 86 = V 87 = w 88 = X 

89 = Y 90 = Z 

To put a letter on the stack, you could either enter its numeric value (by 

looking it up in an ASCII table) or use a special input statement called 

{KEY}. 

When executed. {KEY} waits for you to type a character and stores its 

ASCII value on the stack. Thus, getting a letter onto the stack is a 

two-step process. You type {KEY} to put FORTH into the input mode, 

and then you type the character you wish saved on the stack. 

Mythical FORTH Version 1.1 

Ok 

KEY <CR> Ok 

(You actually typed an "A" after the carriage 
return, but it does not show on the screen.) 

'A full listing appears in Appendix C. 

46 



USING FORTH 

What is stored on the stack in the above example is a decimal 65, whose 
ASCII code value is “A.” If you use the dot command to remove the 
top stack element, you can verify this. 

To remove the top number on the stack as the character it represents, 
you use the {EMIT] command. {EMIT} takes the top element of the 
stack and displays it on the screen using the ASCII equivalent of its 
value. 

If you know something about ASCII code, you know that it uses only 
seven bits of information to represent the entire character set. Stack 
elements contain 16 bits in Forth-79. {EMIT} uses only the seven least 
significant bits in figuring out what character to display. 

bit# 15 13 11 9 7 5 3 1 
14 12 10 8 6 4 2 0 

bits •••••••••••••••• 

first byte second byte 

ASCII code 

j EMIT j uses 

In other words, {EMIT} doesn’t care what the first nine bits in the stack 
element to be displayed are. 

47 



DISCOVER FORTH 

-Don’t Just Sit There, Do Something- 

Okay, now that you know how to get things onto and off the stack, it is 

time to combine that knowledge with some basic FORTH words. 

You’ll remember from the last chapter that FORTH arithmetic 

requires that the numbers be on the stack before an operator is 

invoked. Let’s add 2 and 2. 

Mythical FORTH Version 1.1 

Ok 

2 2 + ,<CR>4 Ok 

Just to make sure that you didn’t get lost, take a look at the following 

diagram of what is happening at each step: 

48 



USING FORTH 

YOU TYPE 

Stack 

2 

\ 

\ 
2 

i + 

2 4-(first 2 is now on stack) 

\ 
2 2 4Hboth 2s are on stack) 

4 ^-(result stored on stack) 

to display 

In other words, each “2” went onto the stack. The addition operation 

combined the top two numbers on the stack and stored the result as the 

new top number on the stack. The dot command removed that number 

and displayed it. 

If the above notation is still a little bit confusing to you, think of each 

horizontal line as a “snapshot” of what is happening at a specific 

moment in time. The line that has “2 2 +” on it shows you that at the 

moment you type {+J, the stack has a pair of 2s on it. At the moment 

you type {.}, the stack has a “4” on it. 

-To Err is Human- 

Just for the fun of it, try typing another plus sign after the first one in 

the above example (remember to leave a space between each FORTH 

entry). You should now see something like the following: 

49 



DISCOVER FORTH 

Mythical FORTH Version 1.1 

Ok 

2 2 + + . .<CR> 8246 .? The stack is empty. 

You’ve just made your first error. The reason you get the strange error 

message is that FORTH requires two numbers on the stack to 

complete the second addition operation. With only one number there 

(the “4” from the first addition), you have a stack underflow. 

The “8246,” which certainly isn't the value of 2 2 +, comes from the fact 

that you attempted to add with only one number on the stack. The 

word which caused the stack underflow (the {.}) was displayed with a 

question mark. If you ever begin to get strange results in simple 

arithmetic calculations, the first thing to suspect is that there weren't as 

many elements on the stack as you thought there were. 

Error messages abound in FORTH and you can usually modify them 

to your heart’s content (more on that later). 

-More Words- 

It’s time to accelerate the pace a bit. At this point, you should have a 

general idea about FORTH arithmetic, the execution of words, and 

how the stack is used. You’re now going to be introduced to some new 

vocabulary so that you can try out a few ideas of your own. 

50 



USING FORTH 

YOU TYPE 

Stack 

DUP NUMBER1 NUM8ER2 

NUMBER1 NUMBERS 
\ 

NUMBERS 

{DUP}: duplicates the top number on the stack. In other words, what 

was the top element on the stack is now the top two elements on the 

stack. 

YOU TYPE 

Stack 

2DUP NUM1—NUM2 NUM3—NUM4 

NUM1—NUM2 NUM3—-NUM4 NUM6—IMUM6 

{2DUP}: duplicates the top double number on the stack. In other 

words, what was the top two elements on the stack is now the top 

repeated so that it is the top four elements on the stack. 

YOU TYPE 

Stack 

ROT NUMBER1 NUMBER2 NUMBER3 

\ \ 
NUMBER1 NUMBER2 NUMBERS 

{ROT}: rotates the third element on the stack up to the first position, 

while shifting the other two elements back one. This is a method of 

51 



DISCOVER FORTH 

getting the top two elements out of the way while working with the 
third. The conclusion should be that three consecutive {ROT}s will 
leave the stack in the same position you started with. 

Stack 

YOU TYPE 

.R 

✓ 

NUt 1 

' / 

NUMBER1 

NUMBER2 NUMBER3 

{.R}: the “dot-R” command removes the second number on the stack 
and displays it on the screen much as the dot command displays the 
top number. The difference is that the first number on the stack is a 
“formatting field;” it tells FORTH how many spaces to use for 
formatting the second number. A {. R} with a pair of 2s on the stack will 
send out a space followed by a 2 (no leading zeros are emitted). A {.R} 
with a pair of 3s on the stack will send to the console two spaces 
followed by a 3. This command is useful for aligning numbers on the 
screen in printed reports. You must be careful, however, to make sure 
that you specify a formatting field that is as wide as the longest number, 
or else you may find that the numbers no longer line up. 

-And So, FORTH- 

You’re now an official FORTH user. Remember, at this point you 
know quite a number of FORTH words that you can type and execute 
immediately on your system. You should practice with your accumu¬ 
lated knowledge until you feel comfortable with the FORTH stack and 
arithmetic processes before moving on to the next chapter. 

In this chapter, you have learned 

• How to load and execute FORTH (with some help from the 
FORTH manual that accompanies your version). 

• How to get both numbers and characters on and off the stack. 

• How to use the stack for arithmetic calculations. 

52 



USING FORTH 

• What a FORTH error message looks like and why one might occur. 

• Some new words, including 

prints out top number from stack 
KEY inputs a character from the keyboard to the stack 
EMIT displays the ASCII representation of the top number on the stack 
DUP duplicates the top single number on the stack 
2DUP duplicates the top double number on the stack 
ROT rotates the third element on the stack up to the first and moves the 

top two down one 
.R formats printed numbers using the top two elements of the stack 

53 





Chapter 6 

Interpreting 
And Compiling 

“Egad, I think the interpreter is 
the hardest to be understood of the tu/oi” 

Sheridan. The Critic 

55 



DISCOVER FORTH 

In this chapter you’ll learn about one of the key assets of FORTH, the 
ability to create new words from existing ones. 

---Review of Words--- 

Just to make sure that you aren’t confused before being introduced to 

some new concepts, the following is a summary of some of the things 
you’ve learned about FORTH words: 

• A FORTH word is immediately executable. You type it and it 

executes. (Actually, it isn’t quite that simple. You can, for instance, 

type a string of FORTH words — each set off from one another by a 

space — and effectively not execute them until you press the carriage 
return key.) Words execute in the order you typed them. 

• FORTH words perform functions. You’ve been introduced to sev¬ 

eral FORTH words so far, which do anything from calculating to 

rearranging the stack to performing input or output functions. 

You’ll remember that programming in FORTH is like building a 

pyramid: you use words to build a higher level block, to build one yet 
higher, and so on. It’s time to find out how to do that. 

-Mi( Building Blocks, Please- 

Let s say that you wanted to add two single-digit numbers and then 
display them on the console screen. 

The sequence of FORTH words to perform this sequence of events 
would be 

KEY 48 - KEY 48 - + . 

The {48 -} after each {KEY} converts each digit from its ASCII code 

representation to its equivalent numerical value. 

Assume, also, that you’d like this new meta-function to be called 
{ADAMUP}. 

To create a new word {ADAMUP}, you need to know how to define 

your own words in the dictionary. It’s actually very simple. All you do 

is put a colon and the name in front of the sequence of words, and 

56 



INTERPRETING AND COMPILING 

terminate the whole string with a semicolon. Here s how you would 

define {ADAMUP}: 

: ADAMUP KEY 48 - KEY 48 - + . ; 

Notice several things about this “colon definition. First, all FORTH 

words (including the colon, your new word name, and the semicolon) 

are set apart by at least one space. Second, the sequence is just as you 

wish it to execute. 

-Now/ What—- 

Any time that you want to execute your process, all you type is 

{ADAMUP}, since it’s now in your FORTH dictionary. In fact, you 

can even use {ADAMUP} in subsequent definitions you create thus 

the pyramid programming effect. 

When you type a colon into FORTH, it does not actually execute any 

of the following processes up to the semicolon. Instead, FORTH only 

checks to see if these words exist and uses their addresses in creating the 

new word. There are some exceptions to this, but none which you need 

to worry about at this time. 

Compilation in FORTH, therefore, is not what is traditionally called 

compilation. Normally, to compile something on a computer means to 

reduce it to machine-language code. In FORTH, it is the creation of a 

new word. FORTH compiles the addresses of the old word into a new 

word. 

There are many mistakes that you can make in creating colon 

definitions. You might use a word that doesn’t exist, for instance. 

Appendix E is a list of common FORTH error messages. 

--Over and Over and Over-- 

Here’s something you might not have expected: you can redefine 

existing words, even those built into your version of FORTH. 

The following definition is valid: 

: DUP KEY 48 - KEY 48 - + . ; 

{DUP} appears in the above example, even though it already has a 

definition. The new definition will remain until you either reload or 

57 



DISCOVER FORTH 

restart FORTH or tell it to “forget” that definition (which will be 

discussed later). FORTH will tell you when you redefine something by 

presenting the advisory message “ISN’T UNIQUE.” You haven’t made 

a mistake, but FORTH is warning you that you’ve redefined {DUP}. 

-Other Define Creations- 

You should be aware of several other FORTH words in conjunction 

with the colon definitions described above. 

{FORGET} name 

To delete all dictionary entries that you create after a specific point, 

simply type the FORTH word {FORGET} followed by the name of the 

word from which the deletions are made. Let’s say that you had created 
the following new words: 

BOB 
TED 

CAROL 
ALICE 

If you had created them in the order listed above, typing {FORGET 

CAROL} will cause FORTH to delete the entries for both {CAROL} 
and {ALICE}. 

{FORGET} should be used with great care. If you create many words, 

you can easily forget in what order you created them and thus have no 

idea what the effect of a {FORGET} command might be. 

-{VLIST}- 

You may wonder how you can remember what words you have in your 

dictionary and what order you entered them in. Fortunately, FORTH 

has a way of finding out. 

{VLIST} is a command that displays all of the names of words defined 

in the context vocabulary. The order in which the words are displayed 

is exactly the reverse of the order in which you defined them. In other 

words, the last word you defined will be the first displayed using 

{VLIST}. 

58 



INTERPRETING AND COMPILING 

In some versions of FORTH, {CLIST} or {DLIST} performs the same 

function as {VLIST}. Check your FORTH manual to see if your 

FORTH might be one of these. 

-So There Vou Have It- 

In this short chapter you learned a big concept — the “colon 

definitions” which make FORTH such a unique and highly desirable 

language. You should now be able to create some simple manipulations 

with your own words and dictionaries. 

The following is a summary of the main concepts you learned in this 

chapter: 

• Colon definitions (or compilations) are merely a sequence of words 

you want executed and to which you assign a unique name. 

• You can redefine existing words. 

• The new FORTH words or tools you learned include 

defines words in the FORTH dictionary 
; defines words in the FORTH dictionary 

FORGET deletes dictionary entries 
VLIST (or CLIST or DLIST) displays all words in context dictionary 

P 

59 



Chapter 7 

Memorif 
Manipulations 

“The words of the wise ore as gods, 
and as nails fastened bq the masters of assemblies.” 

The Bible. Ecclesiastes. XII. II 

61 



DISCOVER FORTH 

The primary thrust of this chapter will be to teach you a number of new 

words, all of which manipulate the memory of your computer. 

-The Return of the Variable- 

If you’ve programmed in another computer language, you’re probably 

used to working with variables. A variable is simply a place in memory 

reserved for a specific piece of information you want associated with 

the variable’s name. Suppose, for example, that you wanted to keep 

track of the number of base hits in a baseball game. Wouldn’t it be nice 

if you could create a little “pocket” in memory for that number and 

retrieve it using the name “HITS”? You can. 

To create a variable, you type the word {VARIABLE} followed by the 
name you wish to assign it. 

VARIABLE name 

Some versions of FORTH also require you to enter a beginning value 

for the variable. If your version is one of these, you need to precede the 

above information with the value, as in the following: 

value VARIABLE name 

FIG-FORTH takes the top value on the stack and initializes the 

variable to that value. In other words, it functions exactly as in the 

example, except that if you don’t assign a value, the current value in the 

top position of the stack is used as the initial value. If you’re using 

FIG-FORTH, or another version of FORTH that operates like this, be 

careful. You could spend hours trying to find out what’s wrong with 

your FORTH program, only to discover that what you thought was 

the initial value in a variable actually was not. 

When you create a variable, you are actually creating another 

dictionary entry. Therefore, in choosing a name, you should bear in 

mind everything in the last chapter that discussed creating words. The 

difference between a variable and a word in FORTH is primarily that 

no user-definable executable code is associated with the variable. 

-Store It and Fetch It- 

Just creating a variable does you no good; you need to be able to put 

information into the memory space reserved for the variable and get it 

62 



MEMORY MANIPULATIONS 

back out. The FORTH words that do this for you are called “store” 

and “fetch.” 

The first word you need to know is called “store.” In FORTH, it is 

represented by the word {!}. To store something (that is, to use the word 

{!}), FORTH needs to know two things: the address at which to store 

the information and the information to be stored there. 

To put something into a variable’s waiting memory, you place the value 

on the top of the stack, then type your variable’s name (which retrieves 

its address) followed by a space and {!}. 

value name ! general form 

48 CHIMPS ! example 

The word {!} doesn’t have to be associated with a variable. Typing a 

variable’s name places its address on the top of the stack. Thus, if you 

peeked inside FORTH to see what’s happening, you’d see something 

like the following: 

Stack 

YOU TYPE TOP «-- BOTTOM 

48 

\ 
CHIMPS 48 

\ 
! ADDRESS 48 

V/ 

♦ 
48 is stored at ADDRESS 

Thus, if you know the numerical designation of the memory address at 

which you wish to store something, you don’t have to create variables 

at all. You could just as easily have typed 

48 4096 ! instead of 48 CHIMPS ! 

The drawback to your supplying the numerical address is that you 

must keep track of it and remember it. Basically, it’s easier to 

63 



DISCOVER FORTH 

remember names than numbers, so using variables does make sense in 

FORTH. Also, if you choose the wrong area of memory, you could 

easily be storing information in space FORTH is trying to use, so be 
careful. 

Getting information back out of a variable is almost the reverse of {!}. 

The “fetch” operation (represented by the FORTH word {@}) retrieves 

information from the address you supply by typing the following 
variable name: 

YOU TYPE 

Stack 

CHIMPS 

\ 
@ ADDRESS 

X 
VALUE 

In other words, typing {CHIMPS @} will leave the value associated 

with the variable {CHIMPS} on the top of the stack. 

-Constant Reminder- 

The information variables store is, as the name implies, variable. 

Another type of information that you can store in memory and 
reference by name is called a “constant.” 

Constants are usually defined at the beginning of a program. If you 

were writing a program to keep track of what happens during a 

baseball game, for instance, a constant you might want to define would 
be the number of strikes that make an out. 

Constants are defined in FORTH just like variables. 

value CONSTANT name usual form 

or 
CONSTANT name ^ rare form 

64 



MEMORY MANIPULATIONS 

If your version of FORTH is like the second type shown in the 

example, it requires two steps to assign a value to a constant. First you 

give the constant a name, then you assign it a value. You should always 

do both steps together (otherwise it is easy to forget to assign a value to 

the constant, and FORTH will assume it is zero or something worse). 

CONSTANT EXAMPLENAME 

1234 ' EXAMPLENAME! 

The above two lines do the following: 

1. Establish a constant named {EXAMPLENAME}. 

2. Put the value {1234} on the stack. 

3. Typing {’} retrieves the address associated with the word that follows 

(that is, {EXAMPLENAME}) and puts it on the top of the stack. 

4. The {!} operation then places the second value on the stack ({1234}) 

at the address indicated by the top value on the stack (the address for 

{EXAMPLENAME}). 

Retrieving a constant is a bit different from retrieving a variable. To 

put the value associated with a constant onto the top of the stack, type 

the constant’s name. You do not need to type {@} in order to retrieve 

the constant’s value. Thus, typing 

EXAMPLENAME 

after creating the constant would leave the value {1234} on the top of 

the stack. Remember that with a variable you would have had to type 

EXAMPLENAME @ 

to do the same thing. 

-Constant Constants and Variables- 

Most versions of FORTH include some predefined constants and 

variables. Here’s a list of a few of the more common ones and what 

they’re for, but you’ll need to consult the manual that came with your 

FORTH to discover all of the predefined constants and variables you 

can use. 

65 



DISCOVER FORTH 

• {BS} is a predefined constant and stands for “backspace,” which has 

a decimal value of 8 in ASCII code. {BS} always leaves the value of the 
backspace character on the stack. 

• {BL} is a predefined constant and stands for “blank.” It leaves the 
decimal value of 32 (ASCII “blank”) on the stack. 

• {SCR} is a predefined variable and is associated with the FORTH 

editor. It leaves the value of the last screen number edited or listed 

(you’ll learn about editors in a later chapter) on the stack. 

• {SO} is a predefined variable that contains the address of the initial 

memory location of the stack. Some versions of FORTH do not have a 

word that tells you how many elements are on the stack, but many 

versions allow you to easily create such a word with the following 
definition: 

: DEPTH SO @ SP@ - 2 / 1- ; 

This will leave the number of elements as the new top element on the 
stack. 

Some versions of FORTH define a number of other constants and 

variables. “The Software Works FORTH,” for instance, defines the 

following additional constants and variables: B/BUF, BLK, BLKRW, 

BSX, C/L, COLUMN, CONSOLE, CONTEXT, CSP, CURFCb’ 

CURRENT, DENSITY, DISK-ERROR, DP, DPL, DWL, DRIVE’ 

DRIVECAP, DRIVEMAP, FENCE, FILENAME, FIRST,’ 

HEIGHT, HLD, >IN, INDEV, INMAP, LIMIT, LOGDEV, 

MODEM, NETWORK, OUTDEV, OUTMAP, PREV, PRINTER’ 

PUNCH, R#, RO. READER, RESET, ROW, RUB, SERIAL#’ 

SHIFT, STATE, SYSDATE, SYSFCB, SYSTIME, TIB, TOF, 

ULIMIT, UNEXT, USE, VOC-LINK, WARNING, WIDTH. 

It is impossible and unnecessary to define all of these constants and 

variables within the limited space of this book. The same principle 

applies to each. You type the name, and a value is left on the stack when 

you’re working with constants. You type the name followed by {@} and 

a value is left on the stack when you’re working with variables. To put a 

new value into a variable you type the new value, the variable’s name 

66 



MEMORY MANIPULATIONS 

and {!}. Remember, what a constant or variable is keeping track of may 

be a value, a double number value, or an address. Again, your manual 

should tell you everything you need to know about each of these 

FORTH words. 

-—Movin’ On--- 

One of FORTH’s nicer attributes is the ability to manipulate large 

blocks of memory with a single word. The most basic things you might 

want to do with a section of memory are: 

move it FORTH word {CMOVE} 

change it FORTH word {FILL} 
clear it FORTH word {ERASE} 

or display it FORTH words {CDUMP} and {TYPE} 

Moving a section of memory is simple — just place the beginning 

address of the section you wish to move on the stack, followed by the 

beginning address of the place you wish it to be and the number of 

bytes of memory involved. If that sounds hard to conceptualize, just 

examine the following illustration: 

67 



DISCOVER FORTH 

If you wished to move 128 bytes from location 2048 to location 4096 in 
memory, you’d type the following: 

2048 4096 128 CMOVE 

FORTH operation 

# of bytes to move 

starting address of new location 

starting address of current location 

As you already know, typing these three numbers places them on the 

stack so that when {CMOVE} comes along, they are used in the reverse 

of the order you typed them in (remember, the stack is memory that 
seems to work backward). 

There is no reason why you couldn’t use some formula to calculate 

each number involved instead of just typing the numbers. In fact, as 

you get better at programming in FORTH, you’ll let the computer do 
more of the work. 

The {CMOVE} operation works on bytes of memory. There is a 

{MOVE} operation in FORTH as well. It operates exactly the same 

way as {CMOVE}, except that it moves 16-bit “chunks” of memory 

instead of those 8-bit bytes microcomputer programmers are used to. 

One other thing to remember about {CMOVE} before we move on is 

that {CMOVE} starts from the lowest memory address and works its 

way up. If the section of memory you want to move overlaps into the 

place you wish to put it, things aren’t going to work out right. 

68 



MEMORY MANIPULATIONS 

±J I ■ 1 - I- 

If you think about it long enough, you’ll see that when FORTH gets to 

the starting address of the section to which you are copying, it will 

already have changed that memory. Thus, you didn’t really move the 

block intact — there’s going to be a garbled part at the end. If you need 

to move a block that has overlapping sections, you’ll need to create a 

new FORTH word (see Appendix F for examples of FORTH 

extensions). 

To put a specific value in a section of memory, you use a command 

similar to {CMOVE} called {FILL}. You need to specify the following 

three things to {FILL}: 

1. Starting address of memory to fill. 

2. The number of bytes to fill. 

3. The value (byte) to place in the block of memory defined. 

Thus, if you wanted to place the value 145 in all memory from 100 to 

110, you’d type 

100 10 145 FILL 

{FILL} also works from bottom to top, but since nothing is being 

moved, you don’t have to worry about this operation not performing 

properly. 

69 



DISCOVER FORTH 

One thing that should be mentioned at this point is that FORTH 

nTer?ltUre: especially as software developers create new versions 
and add their “dream goodies” onto the language, is not very consistent 

in naming conventions. Why is the byte-oriented {CMOVE} command 

prefaced by a “C” while the byte-oriented {FILL} command isn’t? 

The point to note is that when you define new words, you should 
endeavor to be consistent in your naming practices. 

If you wish to clear a section of memory of the values stored there, you 

need to write zeros into that area. You could do that using the {FILL! 
command just discussed. 

START NUMBER-OF-BYTES 0 FILL 

A better way to do this is the {ERASE} command. You specify the 

starting address and the number of bytes, but the zero is assumed. 

f^RLNcUM8ER °^BYTES ERASE ^neral form 
1024 256 ERASE example (put zeros in 256 bytes 

of memory beginning at 1024) 

Perhaps instead of modifying memory you just want to see what’s 

there. For this action you’d use {CDUMP}. Alternatively, you could 
use the {TYPE} command. 

{CDUMP} is not in FORTH-79 and is not a candidate for inclusion (it 
is not part of the Extension Word Set). Create {CDUMP} as follows: 

:CDUMP OVER + SWAP DO I C@ LOOP; 

{CDUMP} requires that a starting address and the number of bytes to 

dump are on the stack. Then it will print the values of the stored items 
in the specified area on your console display. 

START NUMBER-OF-BYTES CDUMP general form 
45 324 CDUMP 4“ example (dump 324 bytes of 

memory beginning at location 45) 

Just like the other functions discussed in this section, {CDUMP} can be 

executed with numbers calculated from other operations and stored on 

the stack (make sure you get them in the right order, though). 

{CDUMP} dumps the numerical value in the current base but {TYPE! 
dumps the ASCII value. 

70 



MEMORY MANIPULATIONS 

Also, you can use the form {DU MP} instead of {CDUMP} should you 

wish to see the contents of 16-bit memory (the stack, for instance). It 

functions exactly the same way except that it displays the contents of a 

pair of 8-bit locations. 

The following two “dumps” illustrate some of the differences between 

{DUMP} and {CDUMP}: 

Mythical FORTH Version 1.1 

Ok 

1000 10 CDUMP<CR> 114 209 35 115 35 114 

195 47 3 129 Ok 

1000 10 DUMP<CR>53618 29475 29219 12227 

33027 53961 63235 10755 530 9054 Ok 

{DUMP} is not in FORTH-79 but is part of the Extension Word Set. 

Create it as follows: 

:DUMP 2 * OVER + SWAP DO I @ 2 +LOOP ; 

One last point about {DUMP} and {CDUMP} is that they both display 

the contents of memory as numbers in the current “base. ’ You 11 find 

out more about changing the number base in FORTH later. For now, 

unless you have an uncommon version of FORTH or have been 

tinkering with things that haven't yet been discussed, everything you 

see and do should be represented in standard decimal numbers. 

-Fetchin’ and Storin’ Part Tw/o- 

You already know about storing and fetching information in variables 

and constants. Most experienced FORTH programmers use variables 

sparingly, however. 

71 



DISCOVER FORTH 

One of the features of FORTH that often attracts programmers is that 

the language puts you close to the “guts” of the computer. It is quite 

possible to manipulate individual memory locations from FORTH 

without going through the convention of giving them names. 

You’ve just learned about {CMOVE}, {FILL}, {ERASE}, and 

{CDUMP}, but all of these operations work with blocks (sections) of 

memory. How about if you just want to play with one location at a 
time? 

Well, you’re back to learning about {@} and {!}. These two operations 

do not need to be associated with variables. Indeed, if you look 
carefully at what happens when you type 

VARIABLENAME @ 

you’ll find that typing {VARIABLENAME} places an address — that 

of the variable’s location — on the stack, while typing {@} replaces the 
address with the value stored there. 

The store operation works similarly. Typing 

VALUE VARIABLENAME ! 

places two values on the stack — first the value to be stored and then 

the address at which to store it. The {!} stores the value in that address 
and removes both from the stack. 

There is another FORTH word that performs something like the {@} 

operation, but combines is with {.}. This word is {?}. In fact, even if your 

version of FORTH doesn’t contain {?}, you can simulate it by typing 

: ? <3 . ; 

You can generalize the fetch and store operations like 

ADDRESS @ general form to retrieve information from a 
memory location 

VALUEADDRESS! general form to store a value in a memory 
location 

Don’t forget that the {@} and {!} operations work with 16-bit memory 

locations — two bytes in most microcomputers. If you wish to 

manipulate 32-bit or 8-bit memory locations, you’ll need to know 

about “son-of-fetch,” “son-of-store,” “father fetch,” and “father store” 

72 



MEMORY MANIPULATIONS 

(just kidding, but maybe that will help you remember the idea). 
Remember that {VALUE ADDRESS} and {VALUE ADDRESS !} 

create different results. 

• C@ is used to fetch values from a single byte of memory (8 bits) 

• @ is used to fetch values from a normal FORTH memory location 

(16 bits). 

• 2@ is used to fetch values from a double FORTH memory location 

(32 bits). 

• C! is used to store information in a single byte of memory (8 bits). 

• ! is used to store information in a normal FORTH memory location 

(16 bits). 

• 2! is used to store information in a double FORTH memory location 

(32 bits). 

Examine the last of these new instructions, just to make sure you 
understand the concepts involved. 

If you have the following information stored, beginning at memory 
location 0000 

00 32 12 34 12 23 values stored 

* 4 4* * 4 
00 01 02 03 04 05 memory locations 

and if you then type 

5. 0 i 2! 

(that is, store the double number 5. at 0) memory would now 

00 00 05 00 12 23 values stored 

* * 4 * * * 
00 01 02 03 04 05 memory locations 

The “05” occurs in the third memory position in the above example 
because of the way the machine being used stores 16-bit numbers 
(8080, 780, 8086, and PDP 11 -based computers reverse the order of the 
two bytes that make up a single number in FORTH). 

(NOTE: This is not true of all implementations of FORTH. You might 
want to use the following sequence of commands to check how your 
version of FORTH stores double numbers.) 

73 



DISCOVER FORTH 

Mythical FORTH Version 1.1 

Ok 

£ showme 4 0 do i C@ . loop ;<CR>Ok 

5. 0 2! showme<CR>0 4 0 255 Ok 

The {2!} operation affected four bytes (32 bits) of memory. FORTH 

isn’t going to stop you from trying to store another 32-bit value at 

location 0001. If you did so, you would obviously invalidate what you 
had already stored at location 0000. 

-Am I Your Ti|pe---- 

You may have noticed that the one thing not yet discussed is how to get 

memory values out onto your display as regular characters instead of 

values. Actually, you just need to be able to combine two concepts 

already presented to figure it out. What would the following sequence 
of FORTH words do, for instance? 

ADDRESS C@ EMIT 

The answer is that the value stored at the {ADDRESS} would be 

retrieved and displayed using the ASCII character equivalent to its 
value. 

Using this string of three words could be somewhat cumbersome if you 

wish to grab and display a whole handful of consecutive memory 

locations. The FORTH designers realized this and provided you with 
the word {TYPE}. 

{TYPE} requires two numbers on the stack. The bottom number is the 

address at which to begin; the top number on the stack is the number of 
bytes to display. 

74 



MEMORY MANIPULATIONS 

ADDRESS NUMBER-OF-BYTES TYPE 4- general form 

545 23 TYPE ^ example (would display 23 characters 
beginning with the one at location 545) 

-More Than Vou Can Remember- 

Yes, it does sound like a lot of information to remember about memory 

manipulations, but it really isn’t. Take a look at the following things 

that should have become apparent while reading this chapter: 

• There are basically four ways to deal with information in memory, 

variables, constants, manipulate blocks of memory, and manipulate 

individual memory locations. 

• The basic operations you’ll be performing with memory in getting 

things into it and out of it are: 

@ C@ 2(5) (fetch memory locations) 

! C! 2! (store into memory) 

• Some constants and variables are predefined in FORTH. 

BS BL SCR SO 

(Others may depend on your version of FORTH.) 

• With blocks of memory, the basic operations are 

move -4 CMOVE, MOVE 

change FILL 

clear -4 ERASE 

display 4 CDUMP, DUMP, TYPE 

75 



Chapter 8 

Mathematical 
Possibilities 

“This sentence is false.” 
ancient (and wise) paradox 

77 



DISCOVER FORTH 

Quite a lot of any program is devoted to math of one sort or another. 

Just because you’ve been introduced to addition, subtraction, and 

other computations doesn’t mean you know everything FORTH is 

capable of. In this chapter, you’ll learn about the “other” mathematical 
possibilities FORTH allows. 

—-Boolean Alleq- 

The quotation at the beginning of this chapter is a paradox; it contra¬ 

dicts itself. Fortunately, such paradoxes aren’t allowed in most pro¬ 
gramming languages. 

Boolean arithmetic is the name given to computer truths and falsities. 

(This arithmetic is named for George Boole, the mathematician who 

first gave definition to the concept of true and false in math.)1 Boolean 

arithmetic is sometimes referred to as “logical operations.” 

In most computers, there are two possible “Boolean values”: false, 

which is represented by a zero, and true, which is represented by a one 

(often any nonzero number is treated as meaning “true”). 

A variable or memory location that contains a Boolean value is often 

said to be a “flag.” If you see references to “flags” in the manual that 

accompanies your version of FORTH, it means that FORTH treats 
that value as being true or false. 

The terms “flag” and “Boolean value” are used interchangeably in this 

book. It is also assumed that your version of FORTH, when it 

calculates a Boolean value, will output only a “0” for false or a “ 1 ” (for 
true). 

-Truth and Consequences—- 

Why should FORTH need to know truths and falsehoods? The simple 

answer is that one of the necessities of programming is to be able to 

perform actions based upon certain conditions. Simply stated, the 
concept goes something like this: 

IF x IS TRUE, DO THIS-JOB, 

BUT IF x IS FALSE, THEN DO THIS-OTHER-JOB. 

'George Boole. An Investigation of the Laws of Thought. Reprinted ed. New York: 
Dover Publications, 1964. 

78 



MATHEMATICAL POSSIBILITIES 

Old-time programmers call this process “conditional execution.” That 

is, execution of a certain section of the program is contingent upon 

certain conditions being true. 

Program-control structures (including conditional execution) are the 

subject of the next chapter. What you learn about the FORTH “logic” 

words in this chapter should help you understand how decisions are 

made in the conditional-control structures you’ll learn about shortly. 

-Testing, One, Two, Three- 

Let’s start by examining the concept of “tests.” The basic idea is to take 

one element from the stack and test it against a predetermined number, 

or to take two values and compare them against one another. 

You probably remember that there are many logical possibilities: is one 

number less than another, greater than another, or equal to another? 

The following is a list of the possibilities complete with the FORTH 

words that represent each test: 

LOGICAL TEST FORTH WORD 

less than < 
greater than > 
equal to = 

You do each of these tests in the same manner. Put the two values you 

wish to test on the stack and execute the FORTH word. Thus, 

6 9 < 

would test to see if the second number on the stack (6) is less than the 

top number on the stack (9). Since it is, FORTH leaves a value of 1 on 

the stack to indicate that it has encountered a truth and removes the “6” 

and “9.” 

The following is a summary of the three basic operations: 

XY< is X less than Y? 
X Y > is X greater than Y? 

X Y = is X equal to Y? 

79 



DISCOVER FORTH 

Now for some more operations, this time comparing one number 

against a predetermined value, consider the following: 

LOGICAL TEST 

greater than 0 

less than 0 

equal to 0 

FORTH WORD 

0> 
0< 
0= 

NOTE: some versions of FORTH do not include the {0>} word. You 

can easily create it by typing 

: 0 > 0 > ; 

In each of the above tests, you place one number on the stack, then 

execute the FORTH word for the test. Thus, 

5 0 > 

tests to see if 5 is greater than 0 (it is, so a 1 is left on the stack and the 5 is 

removed). 

If you’re making a long calculation and then want to use the result to 

determine what section of the program to execute next, these “zero 

tests” become valuable indeed. By the way, you should notice one thing 

about the FORTH word {0=}. This really tests to see if a flag or value is 

false (that is, zero). This is a handy logical operation, because it 

effectively reverses the flag. (For computer types, that means that {0=} 

is similar to the logical equivalent of the “NOT” function. Unfortu¬ 

nately, most versions of FORTH test only a flag and do not perform a 

true “bitwise” logical NOT. Thus, the uses for this word are severely 

restricted.) 

You can create the logical operations “less than or equal,” “greater 

than or equal,” and “not equal” with the following colon definitions: 

: <= 2DUP < ROT ROT = = 0= ; 
: <= 2DUP < ROT ROT = = 0= ; 

: <> = 0= ; 

-Shorthand Arithmetic- 

The truth test is one form of advanced arithmetic functions you’ll want 

to use within FORTH. Another is what you might call “shorthand” 

arithmetic. 

80 



MATHEMATICAL POSSIBILITIES 

Two common computer operations are “increment” and “decrement.” 

These two terms really mean to “add 1” and “subtract 1,” respectively. 

In FORTH, they add 1 or subtract 1 from the value on top of the stack. 

(1 +} increments the stack value by 1 
{1 -} decrements the stack value by 1 

Some versions of FORTH also have words that add, subtract, 

multiply, or divide the stack by 2. As you would expect, these words 

look like the following: 

{2+} increments the stack value by 2 
{2-} decrements the stack value by 2 

j2xj multiplies the stack value by 2 
{2/} divides the stack value by 2 

These shorthand operations are fine, but what if you want to add a 

number other than 1 or 2? If you want to add a specific number to a 

value stored in memory, you have to specify a sequence of execution 

something like the following: 

VARIABLENAME @ VALUETOADD + VAR I ABLE NAME I 

If you have to do this often, you might find yourself doing a lot of 

typing. Also, you’ll note that FORTH makes this a two-step operation 

when it really should be one step — this will slow things down slightly. 

Some versions of FORTH have a way of reducing this typing to 

VALUETOADD VARIABLENAME +! 

The more general form is 

VALUE ADDRESS +! 

FORTH adds the value to the number stored at the address specified 

and restores it at that location. 

-Modern Times- 

Since arithmetic in FORTH uses only integers, FORTH doesn’t keep 

track of numbers to the right of the decimal point (usually referred to 

as “fixed-point” arithmetic). The limitation of integer-only arithmetic 

is no major problem if all you wish to do is add and subtract numbers 

(you can simply do all calculations without the decimal point and add 

it later when you display results). Say you want to add 32.45 and 27. 

81 



DISCOVER FORTH 

Mythical FORTH Version 1.1 

Ok 

32.45<CR> Ok 

27.00<CR>Qk 

D+<CR>Ok 

<# # # ASCII . HOLD #s #> TYPE<CR>59.450k 

For the moment, don’t worry if you don’t recognize much of the last 

line of coding above. It is simply a way of formatting double numbers 

with two digits to the left of the decimal place. 

If we express this in other words, you could define a word that we’ll call 

{ADDFIXEDPOINT} like the following: 

: ADDFIXEDPOINT D+ <# # # ASCII . HOLD #s #> TYPE ; 

t 
this assumes that you are calculating with 

two digits to left of the decimal point 

This new word required two double numbers on the top of the stack for 

addition. This is not an “intelligent” routine, because both values on 

the stack must have the same number of digits (that is, you must pad at 

least one with zeros if they are unequal in length, and you must 

predefine the number of digits to the left of the decimal place). Never¬ 

theless, this simple routine should convince you that noninteger 

addition, multiplication, and subtraction are possible without much 

more knowledge than you already have accumulated. 

Division with noninteger calculations is more difficult, however. With 

division the above routine won’t work. Instead, you’ll need to have 

separate small routines to work both the quotient and remainder in the 

operation. 

82 



MATHEMATICAL POSSIBILITIES 

{MOD} is an operation that divides the second number on the stack by 

the top one, and leaves the remainder as the only result on the stack. 

Notice that this operation differs from the {/{function only in that {/} 

leaves the quotient on the stack instead of the remainder. 

A word or two concerning the remainder is necessary. Here’s an 

example to illustrate. 

14 divided by 6 
quotient = 2 

remainder = 2 

If you’re not familiar with the long division notation, the above 

example may surprise you. Long division works like the following: 

2 
6 ) 1 4 

1 2 ( 2 times 6 ) 
2 

If you continued the long division, you would come up with the value 

you might have expected (2.3333). Modulo arithmetic (whence the 

FORTH word {MOD} derives) forces you to convert the remainder 

into the decimal value. To do so, you use a routine that works just like 

long division: add a zero to the right of the 2 (that is, multiply by 10) 

and divide by 6 again. 

83 



DISCOVER FORTH 

2.3 

6 ) 14.0 
1 2 

2 0 
1 8(3 times 6 ) 

2 

Obviously, you do this same series of operations as often as necessary 

to achieve the precision you desire. 

The purpose of this book is not to bog you down in complexities. For 

that reason, we’ll leave the discussion of modulo arithmetic at this 

point. It was brought up so that you would not be led into the trap of 

thinking that noninteger (that is, fixed-point) arithmetic is impossible 

in FORTH, or that you can do it in the same manner as the other 

common math functions. There are several diabolical shortcuts to 

floating-point math with FORTH, but they fall completely outside the 

context of a beginner’s book on the subject. A forthcoming book will 

present a number of advanced programming hints that will make using 

FORTH for floating-point arithmetic as easy as it is in other languages. 

-The Results Are In- 

Those of you with “math anxieties” shouldn’t have been lost in this 

chapter. But just in case you’re still shaking and need a refresher course 

on what was introduced in this chapter, the following is what you 

should have learned: 

• Boolean values (or flags) are the computer’s way of keeping track of 

truths or falsehoods. Generally, a value of zero represents false, and a 

value of one represents true. 

• Conditional execution (coming up in the next chapter) is one reason 

you need true and false values. 

• Several comparison tests are possible, all of which result in a true or 

false value being placed on the top of the stack. 

< less than 
> greater than 

= equal to 

84 



MATHEMATICAL POSSIBILITIES 

0> greater than zero 
0< less than zero 
0= equal to zero 

• Some shorthand addition math routines were introduced. 

1+ increment 
1 - decrement 
2+ increment by two 
2- decrement by two 
+! add a value to a value stored in memory 

• Fixed-point numbers were introduced. Modulo math, used for 

noninteger division, was briefly discussed, along with a new word, 

{MOD}. 

85 



Chapter 9 

Control 
Structures 

“You Can’t Get There from Here” 
Ogden Nash, poem title 

87 



DISCOVER FORTH 

So far, what you’ve learned about FORTH makes it no more 

sophisticated than a memory calculator for which you can design the 

calculations you desire. If it is to be considered a language, it must have 

a way to control the flow of information. In this chapter, you’ll learn 

how to make FORTH repeat operations and execute words only on 

specific conditions and how to manipulate the sequence in which 

instructions are executed. 

-1 Do- 

Perhaps the simplest control structure you can create is one that 

repeats an operation several times. 

In FORTH, you control repetition by using the words {DO} and 

{LOOP} within a colon definition. Every word between these two 

special ones will repeat the number of times you specify. Actually, 

{DO} and {LOOP} form what is called an “indexed loop.” That means 

that you control the number from which the loop starts counting and 

the number at which it stops counting, and you can use the current 

value of the loop for calculations. 

Consider an example. Say that you are playing baseball. One of the key 

elements of that game is that you have to keep track of the outs to know 

when an inning (or half of an inning) is over. You start with no outs 

(that is, 0) and add 1 each time an out occurs. What happens between 

outs is execution of some sort. 

{DO} and {LOOP} work similarly to our hypothetical baseball game. 

You can tell FORTH to start counting at 1 and count up to 3, and 

execute something between the counts. 

: WORD 4 1 DO SOMETHING LOOP ; 

Remember, {DO} loops can be used only in definitions; you cannot 

execute {DO} directly. The above example defines a word called 

{WORD}, which counts from 1 to 3. The general form in which you use 

{DO} and {LOOP} is 

FINALVALUE+1 STARTVALUE DO words LOOP 

In other words, the top value on the stack should be the starting value 

from which to count, with the final value plus one being the second 

88 



CONTROL STRUCTURES 

number on the stack. You may have any number of words in between 

the {DO} and the {LOOP}, all of which will be executed for every value 

counted (in other words, counting from 1 to 3 will execute that group 

of words three times). 

You don’t have to specify the start and end values within the colon 

definition. One nice thing about FORTH is that as long as you keep 

track of where all the numbers are going to and coming from, you can 

pass values between words. Make sure you understand this last part. If 

you wanted to count from 1 to 5 and then later count from 2 to 10, you 

could type the following sequence: 

Mythical FORTH Version 1.1 

Ok 

: AROUND DO I . LOOP;<CR>Ok 

6 1 AROUND<CR>1 2 3 4 5 Ok 

11 2 AROUND<CR>2 3456789 10 Ok 

In the above example, a new word, {I}, was introduced. This word puts 

the current “count” on the top of the stack. Thus, the sequence {I .} 

in the above example retrieves the count and displays it. Notice, by the 

way, that the numbers used for the beginning and ending counts for 

{AROUND} could have been calculated by another word or routine 

and left on the stack instead. 

Use of an “index pointer” ({1} in most versions of FORTH) adds a great 

deal of flexibility to the concept of repeated loops. Remember, the 

index pointer puts the current count on the top of the stack, and the 

count could be used for calculations. 

Suppose you wanted to calculate the squares of the numbers from 1 to 

10. You could do this by defining a word like the following: 

89 



DISCOVER FORTH 

Mythical FORTH Version 1.1 

Ok 

: SQUARES DO DUP * ._ LOOP ;<CR> Ok 

11 1 SQUARES<CR>1 4 9 16 25 36 49 64 81 

100 Ok 

For each loop in the above example, what happens within FORTH is 

Notice how there is nothing on the stack at the beginning or end of the 

process. This is intentional. This particular routine doesn’t have any 

effect on any others we may execute after it. Thus, it leaves the stack 

unmodified. 

90 



CONTROL STRUCTURES 

It is fine to develop routines that do change the stack, either by taking 

values off the stack or adding values to it. If you do this, however, be 

forewarned that you must pay particular attention to the sequence of 

words you execute. If you program haphazardly or ignore what’s on 

the stack, you’re likely to develop programs that don’t function 

correctly, or don’t function at all. 

-The Adjustable Loop- 

A second form of the {DO} loop operates in exactly the same fashion as 

that described above, except that you can tell FORTH to count by a 

number other than 1. 

The general form of this second type of loop is 

DO words INCREMENT+LOOP 

Again, this loop can be used only within colon definitions. 

You’ll notice that the primary difference between this “adjustable” loop 

and the one described earlier is that you tell FORTH what number to 

count by (INCREMENT). You do not type “INCREMENT.” Instead, 

you type the value you wish to increment the loop by. Depending on 

your version of FORTH, you can even count backward by specifying a 

negative number. {COUNTDOWN} counts from 10 to 0. 

Mythical FORTH Version 1.1 

Ok 

2 COUNTDOWN DO j 1 -1 +LOOP ;<CR> Ok 

0 10 COUNTDOWN <CR> 10 987654321 Ok 

91 



DISCOVER FORTH 

To count backward you must specify a negative increment and make 

sure the two values you pass to the loop are suitable for counting 

backward. 

-The Big {IF}- 

Conditional execution has come up before and now it’s time to learn 

how to use it. Perhaps you’re like the author of this book and have said 

to yourself something like, “If I win the Pulitzer Prize, I’ll vacation in 

Rio this year.” That is conditional execution. 

Conditional execution with FORTH is stated in a manner similar to 

the way you pondered the Pulitzer above. 

IF true EXECUTION TAKES PLACE 

You’ll remember that in the last chapter you learned about Boolean 

values (TRUE/ FALSE). To use conditional execution within FORTH, 

you leave a Boolean value on the stack and then execute the following 

general sequence of instructions: 

IF words THEN 
or 

IF words ENDIF (depends upon version) 

If the Boolean value was “true,” execution of the words will take place; 

if the Boolean value was not “true,” execution of the words will not 

take place. The conditional execution stops after the FORTH word 

{THEN} has been executed. Just like {DO}, {IF} can be used only 

within colon definitions. 

That’s easy enough, but have you ever said something like, “If I win the 

Pulitzer Prize, I’ll vacation in Rio this year; but if I don’t, I’ll kill 

myself’? You’ll note that two things can be executed: either buying a 

plane ticket to Rio (if the condition is true) or killing yourself (if the 

condition is false). 

In FORTH, this “dual conditional” takes the form of: 

IFwordsI ELSE words2 THEN 

or 

IF wordsl ELSE words2 ENDIF (depends upon version) 

92 



- 

CONTROL STRUCTURES 

{Words 1} would execute if the value on the top of the stack was “true,” 

while {words2} would execute if the top stack value was “false.” In 

other words, no matter what Boolean value is encountered, some 

additional instructions are followed. 

You may embed {IF} statements within {IF} statements, if you wish. In 

other words, {IF} can be one of the words that executes when a 

condition is met. 

IF IF words ELSE words THEN ELSE words THEN 

is a valid FORTH structure. Remember, however, that there must be a 

Boolean value on the top of the stack for each {IF} encountered. 

Programmers used to other languages (for example, BASIC, Pascal, 

and so on) might not be used to this horizontal representation of 

conditional execution, as it is extremely difficult to see embedded 

conditions. Another way to look at the general structure of {IF} is 

IF 

words 
words 
words 

ELSE 

words 
words 
words 

THEN 

executed when TRUE 

executed when FALSE 

An embedded {IF} construction would look like the following: 

IF 
IF 

words 
words 

words 
ELSE 

words 
words 
words 

THEN 
ELSE 

2nd IF TRUE 

2nd IF FALSE 

words 
words 
words 

1st IF FALSE 

THEN 

1st IF TRUE 

93 



DISCOVER FORTH 

The {IF} functions give you the ability to add “thinking” to your 

FORTH program. All the FORTH words you’ve learned so far 

execute unconditionally. {IF} is the first that controls whether other 

words will execute. Using {IF} allows you to put intelligence into your 

program to determine which set of instructions should be used. 

Don’t jump to any conclusions about this “intelligence,” however. Your 

computer can’t really think, but the {IF} function does add an 

enormous flexibility to your programming — so much, in fact, that 

you’ll be able to create complex “logic paths” for individual tasks you 

assign the computer. 

-Let Me {BEGIN} {AGAIN}- 

Yet another conditional construct in FORTH programming is that of 

the {BEGIN} function. {BEGIN} has three common forms. 

The first {BEGIN} construct is actually an unconditional loop (that is, 

it will be repeated indefinitely). Newcomers to FORTH might be 

surprised to see a language with the ability to create a built-in “endless 

loop.” 

BEGIN words AGAIN 

In the above example, all of the FORTH words that appear between 

{BEGIN} and {AGAIN} will be repeated — in sequence — essentially 

forever. {BEGIN} must be used within colon definitions; it cannot 

execute directly. 

To keep the above loop from going on indefinitely, you should add an 

option that lets you terminate execution. You can choose one of two 

common FORTH words: {BYE} returns you to the operating-system 

level and {COLD} restarts FORTH. In addition, you can use the words 

{WARM}, {QUIT}, {ABORT}, or {EXIT} to terminate execution — 

check your FORTH manual to see how to use each. 

A second {BEGIN} construct is to repeat the series of instructions until 

a certain condition has been met. The general form for this is 

BEGIN words flag UNTIL 

You don’t type the word {flag}, but instead leave a flag on the stack. If 

the flag (Boolean value, remember?) is “false,” the loop will repeat. 

94 



CONTROL STRUCTURES 

The last way to use {BEGIN} is to have an “exit test” in the middle of 

the loop, a construct that Pascal and other languages don’t have. 

BEGIN words flag WHILE (words) REPEAT 

The “(words)” in the above example indicates that you can place the 

test for falsehood anywhere within the loop, as opposed to the 

{BEGIN} - {UNTIL} construct, which requires that the test of the flag 

occur at the end of the sequence of words constituting the loop. As 

before, you don’t type {flag}; instead, you leave a flag on the stack just 

prior to executing the {WHILE} statement. Execution continues while 

“flag” is true. When flag becomes false, the word immediately follow¬ 

ing {REPEAT} will execute. 

-Other Control Structures- 

You can combine several of the control structures presented here to 

make new, more complex ones. 

Some versions of FORTH have invented some of these new structures 

for you. One common extension of the FORTH language involves the 

{CASE} statement, an imitation of the Pascal statement of the same 

name. Instead of testing for true or false, the {CASE} function allows 

you to define procedures based upon the value encountered on the 

stack. In other words, if FORTH found a “5” on the stack it would do 

one thing, “6” would make it do another, and so on. This is a 

particularly powerful function, as it allows you to define “multiple 

branching” within your program. If your version of FORTH supports 

{CASE} statements, you would do well to thoroughly investigate its 

use. If such a statement doesn’t exist in your FORTH, you could 

program one yourself (see Appendix F for an example). 

--Out of Control- 

Don’t underestimate the capabilities of the control structures presented 

in this chapter. They will constitute the bulk of the structure of your 

FORTH programs. Following is a quick summary of the words you 

learned in this .chapter and their functions 

• STOP#+1 START#{DO} wordsfLOOP} This construct allows you to 

repeat a sequence of words a specified number of times. The loop 

counts in increments of 1. 

95 



DISCOVER FORTH 

• STOP+#1 START#{DO} words value {+LOOP} This construct allows 
you to repeat a sequence of words while “counting” in increments of 
other than 1. Use {AROUND} and {COUNTDOWN} to see exactly 
how your FORTH does this. 

• {1} Places the current “count” on the top of the stack during 
execution of a loop. 

• flag {IF} words {THEN} This sequence executes the words specified 
if, and only if, the flag is true. 

• flag {IF} words {ELSE} words {THEN} The words between {IF} and 
{ELSE} will execute if the flag is true, while the words between {ELSE} 
and {THEN} will execute if the flag is false. 

• {BEGIN} words {AGAIN} The words {BEGIN} and {AGAIN} will 
repeat indefinitely. 

• {BEGIN} words flag {UNTIL} The words between {BEGIN} and 
{UNTIL} execute until the flag value left on the stack at the end of the 
sequence of words is true. 

• {BEGIN} words flag {WHILE} words {REPEAT} The sequence of 
words between {BEGIN} and {REPEAT} executes until the value of the 
flag is false. When the flag is false, execution skips from {WHILE} to 
the first word that follows {REPEAT}. 

96 



Chapter 10 

Input 
And Output 

“Now/here to go but out, nowhere to come but back.” 
Benjamin Franklin King, The Pessimist 



DISCOVER FORTH 

FORTH wouldn’t be very useful if it wasn’t able to “talk to” all the 

components of your computer. This chapter will teach you the basic 

input and output routines built into standard FORTH, with primary 

emphasis on use of your mass-storage device, the disk. 

-Texting, One, Two, Three—-- 

You’ve already been introduced to several FORTH words that perform 

rudimentary input and output. To jog your memory, these words are 

display top stack element 
EMIT display one ASCII byte 
KEY input one character 

As you may have suspected, there are other console input and output 

routines in FORTH. Using {EMIT} would be a cumbersome method 

of displaying a large string of characters, especially if these characters 

never changed. In BASIC, you can output a predefined sequence of 
statements by using a PRINT statement. 

PRINT “Now is the time for all . . ." 

This would display “Now is the time for all . . .” on the console screen, 
for instance. FORTH has a function that is the equivalent of BASIC’s 
PRINT statement. 

." Now is the time for ail , . ." 

The FORTH word {."} indicates that the string of characters up to the 

next set of quotation marks is to be literally displayed on the console. 

Remember that all input to FORTH must be separated by spaces, so 

you must leave a space after {."} before starting the text you want 

displayed, but not before the terminating quotation mark. 

If there’s a way to output a long sequence of characters, it stands to 

reason that there should be a way to input a long sequence of 
characters, as well. There is. 

You usually use the FORTH word {EXPECT} to get programs to 

request a long string of characters from users. To use {EXPECT}, you 

must leave an address and a value on the stack. The address indicates 

where in memory you want FORTH to begin saving the typed 

characters, while the value represents the number of characters it 
should expect. 

98 



INPUT AND OUTPUT 

A common convention in data entry is to use the carriage return key 

(an ASCII value of 13) to terminate the entry of information, and 

{EXPECT} will stop storing characters you type at the terminal when it 

detects a carriage return or when it receives the total number of 

characters it expects, whichever comes first. 

16000 13 EXPECT 

This would store 13 characters beginning at memory location 16000 

(decimal). To display the characters you stored using {EXPECT}, you 

could use the following: 

ADDRESS NUMBEROFCHARACTERS TYPE 

-Terminal Vocabularq- 

Terminals today generally have sophisticated displays. If you know the 

right sequence of values, you can erase everything from the screen 

simultaneously, move the cursor at random, create inverse video 

characters, and so on. 

Unfortunately, many versions of FORTH don’t have any built-in 

words to accomplish these desirable functions. At a minimum, you 

need to have the following functions available: 

• Clear the screen 

• Move the cursor to any position 

• Produce inverse (or enhanced) video 

• Suspend inverse (or enhanced) video. 

If your version of FORTH doesn’t have these building blocks, then you 

may build them yourself. On a Vector Graphic computer, for instance, 

you would define these four functions like the following: 

: CLEAR 4 EMIT; 
: GOTO-XY 27 EMIT EMIT EMIT ; 

assumes values on the stack 

: BRIGHT 20 EMIT; 

: DIM 20 EMIT; 

If you’re not sure how your console works or how to make it do these 

four things, it would be a good thing to visit your local computer club 

99 



DISCOVER FORTH 

or computer store and find out, as these four added functions can make 
your FORTH programs much more efficient and “cleaner looking.” 

——-Ports — All Ashore Who’s Going Ashore- 

Most microcomputers can have as many as 256 input/output ports. 
The most frequent use of these ports is to hook peripherals (such as a 
printer) to computers, although sometimes they are used internally by 
computers for special tasks. 
(WARNING: If you’re not sure what ports are used on your computer 
for what purposes, make sure that you are using a copy of your usual 
FORTH diskette and have nothing in memory that you cannot 
duplicate quickly. The reason for this is that, on some computers, 
probing around among the I/O ports can cause anything—from 
erasure of portions of the disk to completely restarting the machine. It 
would be unusual for you to cause something to happen, but since it is 
possible, you should be prepared for the worst.) 

Many FORTHs have the following words: 

P@ 4(r gets a character from a port 
P! 4g- sends a character to a port 

These words are similar to @ and ! but instead of a memory address 
needing to be on the stack, these port operations require the port 
address to be there (it is usually in the range of 0 to 255). To get a 
character from I/O port 4, you would type 

4 P@ 

To send a carriage-return character (13) to port 4, you would type 

13 4 P! 

The design of some computers is such that there are no ports, per se. 
Many of the computers that do not utilize I/O ports instead use a 
memory location to substitute for the port (as in “memory-mapped 
I/O”). For these computers, you might be able to create the following 
FORTH words (so that your programs will remain consistent no 
matter what machine they run on): 

: P! address C! ; 
:P@ address C@ ; 

100 



INPUT AND OUTPUT 

-Disk Could Be The Start of Something Big- 

Most microcomputers are limited in the amount of information they 

can address at one time (usually 64K bytes). Even with more memory 

(as in the case of the 256K-equipped computers now being introduced) 

it often turns out that FORTH and other languages cannot easily use 

the additional memory. 

One solution to the dilemma of having only a fixed amount of memory 

available at one time is called “virtual memory,” in which a disk drive 

or tape drive substitutes for a portion of memory. Users of systems that 

feature virtual memory are often unaware that pieces of memory are 

constantly being loaded from or saved onto a diskette. Disk drives are 

available on most FORTH systems and make an almost unlimited 

amount of storage space available, albeit not all at the same time. In a 

limited way, FORTH is a virtual-memory system. 

FORTH does not necessarily use the space on a diskette in the same 

manner as a disk-operating system does. Most operating systems deal 

with the disk in small “chunks.” 

FORTH accesses the disk in 1 K-byte (1024-character) chunks, regard¬ 

less of how the standard operating system for your computer stores 

and retrieves information. A small but growing number of FORTH 

implementations are abandoning the 1 K-byte “block” concept, 

although those that do can be classified only as derivatives of FOR TH. 

In short, every time FORTH places information on the disk, it does so 

1024 characters at a time, and every time FORTH gets information 

from the disk, it retrieves 1024 characters at a time. 

Information is passed between FORTH and the disk drives via 

“buffers.” A buffer is just an area of memory reserved for temporary 

storage of information. A complete 1024-character set of information 

is called a “block” in FORTH terminology. Thus, to save information 

to a diskette, you move a block of characters to the disk buffer and tell 

FORTH to save it. 

Retrieving information works in a similar manner. You ask FORTH to 

get a block, which is copied from the specified area on the diskette to 

the temporary buffer, from which you can then retrieve or use the 

information in any manner you wish. 

101 



DISCOVER FORTH 

Blocks are stored on the disk consecutively and are numbered 

(beginning at zero) sequentially. This means that the very first 1024 

characters of information on a diskette are known as block number 

zero, the second group as block number one, and so forth. 

Each block is usually considered to be composed of further divisions’. 

Traditionally blocks are divided into 16 lines of 64 characters each. 

Standard FORTH has no direct way of manipulating these subdivi¬ 

sions, although an editing program that accompanies the language 
usually provides this ability. 

Earlier it was mentioned in passing that you can change the error 

messages in FORTH. The reason you can is that they are stored on 

your FORTH diskette. Each version of FORTH may be a bit different, 

but generally the very first available blocks are reserved for error 

messages. In most versions of FORTH, two blocks are used for errof 

messages. You should probably reserve two more blocks (blocks 

number 2 and 3 for systems which use blocks 0 and 1 for messages) for 

error messages you invent as you program. 

Each error message can be as many as 64 characters long, and each 

block can contain as many as 16 error messages. If these numbers 

sound familiar, you’re right, they’re the subdivisions mentioned earlier 

in this chapter (two paragraphs ago). 

102 



INPUT AND OUTPUT 

The first error message in the first block is error message number 1. The 

second is error message number 2, and so on. One oddity is that the 

first line in a FORTH block is usually reserved for a “comment” or 

identification, so there is no such thing as error message 0 or error 

message 16. The numbering scheme continues across blocks. The first 

line of the second block is error message number 17, the first line of the 

third block is error message number 33, and so on. 

{ Sample Screen of FORTH Error Messages ) 

SCR # 0 

0 FORTH Copyright (c) 1981 The Software Works, Inc. 

1 The stack is empty. 

2 The dictionary is full. 

3 has incorrect address mode. 

4 isn't unique. 

5 An obscure error of the fifth kind has occurred. 

6 Illegal block number requested. 

7 

8 

9 

10 

11 

12 CP/M Error — Seek to unwritten extent. 

13 CP/M Error - Directory overflow. 

14 CP/M Error - Seek past physical end of disk. 

15 Software Works FORTH for CP/M 2.X Rev-2 

Ok 

103 



DISCOVER FORTH 

When FORTH encounters an error, a number is associated with that 

error. This number tells FORTH where to find the error message 

associated with it, as described in the previous paragraph. 

You needn’t wait for FORTH to detect an error to display an error 

message. You can display any of the FORTH messages at any time by 

placing the number of the one you wish displayed on the top of the 
stack and then typing the word {MESSAGE}. 

CP/ M systems using FORTH that do not use standard CP/ M files will 

not have error messages associated with block number 0. The reason 

for this is that the CP/M system and file directory are located on the 

disk in the exact locations of the first few blocks. Most CP/M 

FORTHs start the error messages with block number 4. 

-I/O You on Explanation-—- 

It’s time to deal with the many disk functions provided in FORTH. To 

transfer a disk block into the temporary buffer, you place the number 

of the block you wish to move and then type the word {BLOCK}. When 

the information has been copied to the buffer, the top element of the 

stack will be the memory address of the start of the buffer. 

Displaying the information in block number 79 would, therefore, be as 
simple as typing the following: 

79 BLOCK 1024 TYPE 

An annotated version of the above might be 

79 (block number to retrieve) 

BLOCK (transfer the block into buffer) 

(leaves address of start of) 
(block on stack) 

1024 (number of characters to) 
(display) 

TYPE (display the block) 

You may change anything in the buffer using other FORTH functions. 

After you’ve done so, you’ll want to save those changes back to the 

diskette. To do so, you first type the FORTH word {UPDATE}. 

{UPDATE} makes the buffer “dirty” — a programmer’s term to mean 

that you have changed the information in the buffer. 

104 



INPUT AND OUTPUT 

Unlike many other words, {UPDATE} does not require a number on 

the stack; it assumes that the last block you accessed is the one you 

want to save. FORTH automatically keeps track of the last block you 

accessed. {UPDATE} does not actually save the changes you made — it 

only marks the buffer as needing “updating.” You use the FORTH 

word {SAVE-BUFFERS} to actually save the information. 

In fact, you can find out the number of the last block you accessed by 

using the FORTH word {BLK}. Typing {BLK @} will place a number 

on the top of the stack that equals the last block number you retrieved. 

This is not to imply that you can’t manipulate more than one block at 

once. The number of buffers you have available in memory varies 

among versions of FORTH, but usually there are at least two or three. 

Each time you copy information from the diskette to the buffers, 

FORTH assigns this new information an unused buffer, assuming 

there’s one left. If you already have something in all the buffers, 

FORTH automatically writes the information in the first buffer you 

accessed (assuming that there were changes, that is, you marked the 

block using {UPDATE}) back to disk and uses that emptied space to 

place the information it has been asked to retrieve. 

To save all buffers in use back to disk at once, you employ the {SAVE- 

BUFFERS} command. All updated blocks will be saved onto disk. 

To clear the buffers without saving the information in them, you use a 

command named {EMPTY-BUFFERS}. 

There is much, much more to disk 1/ O, but it belongs in the context of 

the FORTH editor and the creation, saving, and retrieval of programs, 

which is the subject of the next chapter. 

-I/O, I/O, It’s Off to Work You Qo- 

You encountered a lot of information in this chapter. These main 

points should now seem familiar: 

• To display a long string of unchanging characters on your display 

you use the word {.”}. 

• To input a long string of characters to FOR TH you use the word 

{EXPECT}. 

105 



DISCOVER FORTH 

• Four terminal functions are essential to good programming, al¬ 

though they may not be present in your version of FORTH. If your 

FORTH doesn’t have them, you’ll want to create the following words: 

CLEAR GOTO-XY BRIGHT DIM 

• FORTH stores information on the diskette in “blocks” of 1024 

characters, numbered sequentially. Information passes between 
FORTH and the diskette via buffers. 

• Error messages are stored in the first available disk blocks and are 
numbered sequentially across blocks. 

• You also learned some basic disk I/O operations, including 

BLOCK 
UPDATE 
BLK 

SAVE-BUFFERS 

EMPTY-BUFFERS 

transfer a block to buffer 
save a block from buffer 

places last block # on stack 

saves all buffers to disk (FLUSH in older systems) 
clears all buffers in memory 

106 



Chapter II 

Programming 
In FORTH 

“Mon ever had, and ever will have, 
leave to coin new words well suited to the age.” 

Horace, Ars Poetica 

107 



DISCOVER FORTH 

If you were wondering if all the information in this book would ever 

coagulate into a coherent whole, this is the chapter for you. To be 

useful, any computer language must allow programmers to shape their 

instructions and make them permanent. Although you’ve already 

experimented with pieces of what FORTH can do, this chapter should 

begin to make you feel that the whole is greater than the sum of its 

parts. 

-Screening FORTH- 

In the last chapter you learned that FORTH stores information on 

diskettes in blocks of 1024 characters and that each block contains 16 

lines of 64 characters each. 

Those numbers are not coincidences. Most of the earliest display 

terminals of microcomputer systems featured 16 lines of 64 characters 

each. The reason for this is that 16 multiplied by 64 just happens to 

equal 1024, a magic number in computing, as it happens to be 2 to the 

power of 10. (Remember, computers tend to do everything in binary; 

thus, powers of 2 make a lot of sense.) 

It should come as no surprise that FORTH users often refer to 

information on diskettes as “screens.” Sometimes the term “page” is 

substituted for screen, but the two words mean the same thing, and 

both refer to the basic block concept described earlier. 

Since a screen of information uses the entire area of most computer 

displays, editors were developed to facilitate the creation and alteration 

of an entire disk block of information. So far, you haven’t learned how 

to save the work you program into FORTH. You don’t know how 

because you have yet to learn about the editor that accompanies your 

version of FORTH. 

While all FORTH editors don’t use the same commands, they are 

conceptually the same. You tell FORTH what screen you wish to edit. 

That screen is moved from disk to memory and/or placed on your 

display. You enter new material, make changes and deletions and then 

you save the screen back to disk. 

108 



PROGRAMMING IN FORTH 

What you usually enter on those screens is colon definitions. 1 his is the 

permanent storage of your FORTH programming, sometimes called 

“source code” to indicate that it is the original source of instructions to 

the machine. 

-Screen Presumptions- 

FORTH makes some presumptions about the screens you save on 

disk. You needn’t follow these assumptions if you don’t want to, but 

since most of them make programming in FORTH much easier, it is a 

good idea to learn them. 

FORTH programmers commonly use the first line of each screen for 

comments. Comments are descriptions of what is taking place and 

FORTH ignores them when compiling colon definitions. Comments in 

FORTH are defined as being all material within a set of parentheses. 

Again, since FORTH needs a space between distinct actions, leave a 

space after the left parenthesis and your comment: 

( This is a valid comment. ) 

(This would not be a valid comment.) 

( This (is (a (valid (comment, too!) 

( But (this is ) not. ) 

One of FORTH’s commands is {INDEX}. By putting the first and last 

screen numbers you wish to index on the stack and typing {INDEX}, 

you’ll see the first line of each of the screens that is in the range you 

specify: 

109 



DISCOVER FORTH 

Mythical FORTH Version 1.1 

Ok 

1 10 INDEX<CR> 

1 ( FORTH error messages ) 

2 ( more FORTH error messages ) 

3 ( reserved ) 

4 ( reserved ) 

5 ( Terminal Definitions ) 

6 ( Printer Definitions ) 

7 

8 

9 ( MYPROGRAM start ) 

10 ( MYPROGRAM page two )Ok 

Notice in the above example that screens 7 and 8 appear not to have 

anything on them. The numbers which start each line, by the way, are 

supplied by FORTH; they do not appear in those screens. Notice also 

that everything that appears in the {INDEX} is a valid FORTH 

comment. 

It is possible to put colon definitions on the first line of a screen, but 

such a practice would not necessarily indicate what else was on that 

screen. 

You can see everything that appears in a disk block by using the 

command {LIST}. By placing the number of the screen you wish to 

look at on the top of the stack and then typing {LIST}, you’ll get a 

complete list of that screen. 

110 



PROGRAMMING IN FORTH 

Mythical FORTH Version 1.1 

Ok 

89 LIST<CR> 

SCR # 89 

0 ( PAGE 3 OF FIG-FORTH EDITOR ) 

1 : H ( HOLD LINE AT PAD ) 

2 LINE PAD 1+ C/L DUP PAD C! CMOVE ; 

3 

4 : E ( ERASE LINE-1 WITH BLANKS ) 

5 LINE C/L BLANKS UPDATE ; 

6 

7 : S ( SPREAD MAKING LINE # BLANK ) 

8 DUP 1 - ( LIMIT ) OE ( 1ST MOVED ) 

9 DO I LINE I 1+ -MOVE -1 +LOOP E ; 

10 

11 : D ( DELETE LINE-1, BUT HOLD IT ) 

12 DUP H OF DUP ROT 

13 DO I 1+ LINE I -MOVE LOOP E ; 

14 

111 



DISCOVER FORTH 

If you take a close look at the above screen, you’ll notice several things 

that haven’t come up yet. 

1. You may leave as many blanks between FORTH words as you 

desire (including carriage returns) without affecting the performance 

of programs. These extra blanks increase “readability” of a program. 

2. Comments may appear at any point within a colon definition; they 

will not be compiled. 

3. To use a word in a colon definition, it must already have been 

defined. Notice that line 9 makes use of a word defined in line 4, while 

line 12 makes use of a word defined in line 1. You’ll learn about this 

“top-down” structure later. 

4. All of the definitions presented are short (the longest shown consists 

of 13 FORTH words). If you find that you are writing colon definitions 

with more than 20 words in them, check carefully to make sure that 

each word has a unique function (that is, it doesn’t try to do more than 

one task; this makes debugging easier). 

5. Line 8 contains the characters “0E” and line 12 contains “OF.” 

Programmers will recognize this as being hexadecimal notation. 

FORTH will happily work in any number base you desire (see the word 

{BASE} in Appendix B). 

You’ll also note several new FORTH words in the example on the 

previous page. Most of these will not be elaborated on here, as they are 

quite advanced. 

The word {—>}, however, deserves some mention. The word {—>} 

means that the current page is linked to the next one (that is, the source 

code is continued on the next screen). 

To get the definitions on screens compiled into FORTH, you place the 

starting screen number on the top of the stack and type the word 

{LOAD}- 

23 LOAD 

When FORTH gets to the end of screen number 23, if it hasn’t 

encountered {—>}, it will stop loading at the end of that page. If it sees 

a {—>}, FORTH will continue by loading the next screen, as well. 

Obviously, this can continue for as many screens as you desire. 

112 



PROGRAMMING IN FORTH 

The word {—>} is not in a colon definition. You can intermix direct 

commands to FORTH with colon definitions in your screens. It would 

be possible, for instance, to clear the screen and present a user message 

while loading colon definitions. An example of such a screen might be 

something like the following: 

Mythical FORTH Version 1.1 

Ok 

20 LIST <CR> 

SCR #20 

0 ( START OF MY WONDERFUL PROGRAM ) 

1 CLEAR (CLEAR THE SCREEN ) 

2 CR CR CR CR ( GO DOWN FOUR LINES 

3 ONE MOMENT WHILE I LOAD UP ... " 

4 

5 : TEXT HERE C/L 1+ BLANKS WORD 

6 HERE PAD C/L 1+ CMOVE ; 4- 
definitions 

7 

8 : LINE DUP FFFO AND 17 7ERROR 

9 SCR @ (LINE) DROP ; 

10 

11 ——> .-  ' .— . keep 
loading 

12 

13 

14 

15 

Ok 

direct 
commands 

113 



DISCOVER FORTH 

To stop the loading and compiling of a program, you can also use the 

word {;S}; the word is {EXIT} in FORTH-79. It isn’t always necessary, 

but it is wise to use it anyway to prevent accidents. Whenever you use 

{;S}, all loading of information from the disk block stops. Thus, any 

colon definition or information following a {;S} will not load. Also, {;S} 

is an “immediate” word; therefore, it is not usually used within a colon 

definition. ({EXIT} is not immediate, so it is used within colon defini¬ 

tions. It may not be used within a {DO} . . . {LOOP}.) 

-Programming with the Top Down- 

Once you’ve learned the command structure of the editor that comes 

with your version of FORTH, you know enough to begin programming 

in FORTH. 

FORTH is a language well suited to “top-down” programming. While 

a few programming purists will object to the definition, let’s define 

top-down programming as the practice of first defining the objective, 

then working backward until you know exactly what modules are 

needed to achieve it. 

If you were to design a sports car using the top-down method, you’d 

first define what a sports car is. 

• Fast 

• Small 

• Good handling 

• Sexy design. 

Now, none of the above items tells exactly how to build the car, so 

you’ll need to continue refining your objectives. Consider the term 

“fast,” for instance. 

• Efficient motor 

• Lots of torque 

• Low weight 

• High-performance tires 

• Fuel injection implied 

• Aerodynamic design implied. 

114 



DISCOVER FORTH 

computer languages allow you to work at a much higher conceptual 

level from the beginning, but with FORTH you generally must start 

out by laying a solid foundation. 

In a manner of speaking, you write programs in FORTH from the 

“bottom up,” even though the design process takes place from the top 

down. This is not a contradiction. When you begin writing a program 

in FORTH, you are making the nails, a pile of miscellaneous wood, 

and some paint — later on, you get to build the house. It does you no 

good to build and paint the roof first, and if you’re not working from a 

blueprint, you might find that the roof doesn’t fit the house. 

Other high-level languages give you bigger building blocks to work 

with. In BASIC and Pascal, for instance, you build your house using 

walls, floors, and support beams. The primary difference between 

FORTH and these other languages is that in FORTH you get to design 

the walls, floors, and support beams, whereas in BASIC and Pascal, 

they are already designed for you. 

-Programming Review- 

While this chapter was long on words, it is easy to summarize in a short 

space. 

• You save colon definitions by saving them on screens (disk blocks). 

• You indicate nonexecutable commentary by using parentheses to 

isolate the comments. Comments may appear anywhere, even within 

colon definitions; it is a standard practice to place a comment on the 

first line of every screen of information. 

• You learned several FORTH words that apply specifically to the 

manipulation of screens including 

INDEX displays first lines of several screens 

--> links screens 
LOAD loads a screen or series of linked screens 

;S stops the loading of screens 

• You also learned about top-down programming and its relationship 

to FORTH. 

116 



Chapter 12 

And So: 
FORTH 

“ ‘I shall sit here,’ he said, 
‘on and off, for daqs and daijs.’ ” 

Lewis Carroll, Alice’s Adventures in Wonderland 

117 



DISCOVER FORTH 

Before you read the last words in this book and wander off to invent 

FORTH words of your own, some last observations seem in order. 

-Is It U/orth It- 

Although it may seem like a long time ago, you had to learn to speak 

and understand English. At first, that language probably seemed 

remarkably inefficient and confusing. Most people say the same thing 

about FORTH when they first encounter it. 

The question that comes to mind is: will FORTH be worth the effort? 

No one else can answer that question for you. But consider the 

advantages of FORTH. 

First, FORTH is efficient. It takes up little memory space, especially 

when compared to other languages that evolved on large computer 

systems. 

Second, programming in FORTH, while tough to understand at first, 

becomes simpler and simpler the more you use it. The reason for this is 

that you build blocks at the bottom of the pyramid when you first 

program in FORTH, but can concentrate later on the top levels instead 

of reinventing routines. You’ll find that words you create for one 

program will find use in later programs, making you more efficient in 

the long run. 

Third, FORTH programs seem more conducive to “tuning.” In the 

bottom layer of FORTH programming, you deal with primitive 

functions. If you become a good FORTH programmer, you’ll become 

more aware of the limitations of the machine you are working with and 

become more adept at working around the restrictions. FORTH is a 

language in which it is always possible to make your program faster, 

less error-prone, and more flexible. And when you do make changes to 

your FORTH programs, you’ll find that you can make modifications 

faster and without having to change the entire program. 

Fourth, FORTH is one of the few languages that offers exactly the 

same version for a number of different microprocessors. The “trans¬ 

porting” of a FORTH program between different computers is easy. In 

fact, at least one firm is working on a method by which blocks of 

FORTH screens and definitions can be exchanged between any two 

computers that can communicate with one another. 

118 



AND SO: FORTH 

Last, FORTH is extensible. You can redefine the language any time 

you desire. If you don’t think the word {!} is indicative of the operation 

it performs, nothing stops you from redefining by typing in a colon 

definition such as 

:STORE!; 

If you redefined every FORTH word, your execution speed would 

slow down slightly, but compared to BASIC, FORTH has speed and 

space to spare. (Actually, if you go on to become an expert FORTH 

programmer, you’ll learn a way to redefine the language without any 

loss in speed or efficiency.) 

You make up your mind. FORTH may seem like gobbledygook to you 

now, but if you give it a chance, you just might grow to like it. 

-So What’s Next- 

Assuming that you’ve decided to proceed with using FORTH, you’ll 

eventually need far more information than you received from this 

book. Programming is not a simple chore, nor one that can be taken 

lightly. 

Yourfirst step on completing this book should be to grab your FORTH 

diskette and manual and begin experimenting. While your eventual 

goal may be to create complex programs, remember that one of 

FORTH’s attributes is that it allows you to work with small “chunks” 

of a task at a time. Start with these tasks and use them to define bigger 

ones. 

Once you’re starting to feel at home with FORTH, you should read a 

book or two on structured programming, particularly one with an 

emphasis on top-down programming. There are more books on the 

subject than there’s room for here, but two helplul ones are Softw are 

Debugging for Microcomputers and Dijkstra’s A Discipline of Pro¬ 

gramming. Browse through some at your local technical bookstore 

and pick a structured-programming book that seems “comfortable” to 

you. 

The third step in increasing your knowledge of FORTH is to read the 

manual that came with your FORTH as you would read a dictionary if 

you were trying to memorize it. Get every word into your vocabulary 

119 



DISCOVER FORTH 

and practice it to keep it there. If you’re proficient at assembly 

language, you might also want to get the source code for your 

computer from the FORTH Interest Group. Also, several useful books 

on FORTH have appeared including Byte Books’ Threaded Inter¬ 

pretive Languages and Prentice Hall’s Starting FORTH. 

No one can tell you exactly how to program. Programming in FORTH 

is like a craft: an individual’s skill and interpretation often have both 

functional and artistic results. What you can accomplish with FORTH 

is limited only by the amount of time you spend with the language and 

your imagination. If this book has made the process of learning about 

FORTH easier or has suggested an idea you hadn’t considered before, 

its purpose has been served. 

120 



Appendices 

A: Coding Sheet for FORTH Programming 
B: FORTH-79 Standard—Glossarq of Words 

C: ASCII Character Codes 
D: Suggested Alternatives to the FORTH Sqntax 

E: Error Messages 
F: Some FORTH Extensions 

121 



-Appendix A- 

Coding Sheet for FORTH Programming 

Word: Date: 

Page: Vocabulary: Programmer: 

Stack Upon Entry:_items 

Upon Exit: items 

ACTION 1 2 3 4 5 6 

122 



-Appendix B- 

—FORTtt-79 Standard — Glossary of Words— 

A language standard is the source of exact definitions, but this 

exactness is sometimes less than enlightening to a beginner. We have 

paraphrased most of the definitions in this glossary, removing some 

confusing wording while leaving the technical details intact. A copy of 

the FORTH - 79 standard can be purchased from your local computer 

store or from your local chapter of the FORTH Interest Group. The 

FORTH-79 Standard was published in October 1980 and represents 

the FORTH community’s desire to create a universal definition of the 
language. 

The following conventions are used throughout this glossary: 

addr a value representing a byte's address 
byte a value representing an 8-bit byte 
char a value representing a 7-bit ASCII code 
flag a Boolean value (0 = false, 1 =true) 
n a 16-bit signed integer 
un a 16-bit unsigned integer 
d a 32-bit signed double number 
ud a 32-bit unsigned double number 
<NAME> user-supplied name (used for variables, and so 

forth) 
<TEXT> user-supplied text 

The shorthand method used to indicate stack parameters before and 

after execution of a word places the top of the stack at the right side of a 
line. 

I n addr! 

Stores number n at address specified. 

# udl # ud2 

Generates the next ASCII character to be placed in an output string 

from an unsigned double number (ud 1). The result stored on the stack 

(ud2) is the quotient after division by the current base and is 

maintained for further processing. Used between <# and #>. 

#> d # addr n 

Ends pictured numeric output conversion. The double number (d) is 

dropped from the stack, replaced with an address and a number (n) 

that represent the starting location and number of characters of the 
converted text, respectively. 

123 



DISCOVER FORTH 

#s ud #S 0 0 

Converts all digits of an unsigned double number (ud), adding each to 

the pictured numeric output until the remainder is zero. If the number 

was initially 0, a single 0 is added to the output string. Used only 
between <# and #>. 

' <NAME> addr 

Leaves the address of the named word on the stack. 

( «TEXT» 

All characters following this word (r) up to and including the next right 

parenthesis are considered a comment and are ignored by FORTH. 

There must be a space between the left parenthesis and the start of the 
text. 

* nl n2 * n3 

Leaves the arithmetic product of the two numbers on the stack. 

*/ nl n2 n3 */ n4 

Multiplies nl by n2, divides the result by n3, and leaves the quotient 

(n4) on the stack. The quotient is rounded toward zero. The 

intermediate result (after nl * n2) is a double number, resulting in 

greater precision than the otherwise equivalent nl n2 * n3 /. 

*/MOD nl n2 n3 */MOD n4 n5 

Multiplies the first and second number, divides the result by the third 

number, and leaves the remainder as the fourth number and the 

quotient as the fifth. The intermediary result (after n 1 * n2) is a double 

number. The remainder has the same sign as the first number. 

+ nl n2 + n3 

Adds nl to n2 and leaves the result on the stack. 

+! naddr+! 

Adds n to the 16-bit value at the address specified. 

+LOOP n+LOOP 

Adds the signed number (n) to the loop-index count and compares the 

total to the limit. If the new loop-index count is less than the limit, 

execution is returned to the corresponding DO command. Loop 

control parameters are discarded when the loop is completed. 

nl n2 - n3 

Subtracts n2 from nl and leaves the difference (n3) on the stack. 

124 



APPENDIX B 

-TRAILING addr nl -TRAILING addr n2 

Adjusts the character count (nl) of a text string beginning at the 

address specified to exclude all trailing blanks, i.e., the characters from 

{addr + n2} to {addr + n 1 -1}. 

, n , 

Allots two bytes in the dictionary for the word being defined and stores 

the number indicated there. 

n . 

Displays the number (n) in the current numeric base with a single blank 

after the result. A negative sign is displayed only if the number is less 

than zero. 

." <TEXT>" 

Displays the user-supplied text on the current output device. At least 

127 characters are allowed in the user-supplied text. 

: : <TEXT> 

Used to begin a colon definition. User-supplied text must be valid 

FORTH words or instructions. 

Used to end a colon definition (see above). 

/ nl n2 / n3 

Divides nl by n2 and leaves the quotient (n3) on the stack. The 

quotient is rounded toward zero. 

/MOD nl n2 /MOD n3 n4 

Divides nl by n2 and leaves the remainder (n3) and the quotient (n4). 

The remainder has the same sign as nl. 

0< n 0< flag 

Flag is “true” flag if n is less than zero —otherwise “false.” 

0= nO=flag 

Flag is “true” if n is zero — otherwise “false.” 

0> n 0> flag 

Flag is “true” flag if n is greater than zero —otherwise “false.” 

1+ n 1+ n+1 

Increments n by one. 

1- nl- n-1 

Decrements n by one. 

125 



DISCOVER FORTH 

2+ n 2+ n+2 

Increments n by two. 

2- n 2- n-2 

Decrements n by two. 

79-STANDARD 79-STANDARD 

If no error occurs when this word executes, then a FORTH-79 
Standard vocabulary is available for use. 

< nl n2 < flag 

Flag is “true” if nl is less than n2 — otherwise “false.” 

<# <## #S HOLD SIGN #> 

Initializes pictured numeric output. The words <# # #S HOLD 
SIGN #> specify the conversion of a double-precision number into 
an ASCII character string stored in right-to-left order. 

= nl n2 = flag 

Flag is “true” if nl equals the n2 — otherwise “false.” 

> nl n2 > flag 

Flag is “true” if nl is greater than n2 —otherwise “false.” 

>IN >IN addr 

Leaves on the stack the address of a variable that contains the present 
character offset within an input stream. 

>R n >R 

Places n on the return stack. Every >R must be balanced by an R> in 
the same control-structure nesting level of a colon definition. 

? addr ? 

Displays the number stored at the address. 

?DUP n ?DUP n (n) 

Duplicates the number n if it is non-zero. Otherwise, the stack is 
unchanged. 

@ addr @ n or <NAME> @ n 

Leaves on the stack the number stored at the address specified. 

ABORT ABORT 

Clears the data and return stack and returns control to the terminal in 
execution mode. 

126 



APPENDIX B 

ABS nl ABS n2 

Leaves the absolute value of nl on the stack. 

ALLOT n ALLOT 

Adds n bytes to the parameter field of the most recently defined 

word. 

AND nl n2 AND n3 

Leaves the bitwise logical “AND” of nl and nl on the stack. 

BASE BASE addr 

Leaves the address of a variable that contains the current numeric base 

on the stack. 

begin begin <text> 

Marks the start of a BEGIN-UNTIL or a BEGIN-WHILE-REPEAT 

loop. Must be used in a colon definition. 

BLK BLKaddr 

Leaves the address of a variable that contains the mass storage block 

currently serving as the input stream on the stack. 

BLOCK n BLOCK addr 

Leaves the address of the first byte in the block number (n). If the block 

is not yet in memory, it is transferred into the most recently used 

memory buffer. 

BUFFER n BUFFER addr 

Assigns the next available memory buffer to the block number n, but 

does not read the block from disk. 

C! n addr C! 

Stores the least significant 8 bits of the number (n) at the address 

specified. 

C@ addr C@ byte 

Leaves the contents of the byte stored at the address specified on the 

stack. Since the stack is 16 bits wide, the most significant 8 bits are 

filled with zeros. 

CMOVE addrl addr2 n CMOVE 

Moves n bytes from locations starting at addrl to new locations 

starting at addr2. The contents of memory are moved sequentially; 

thus, overlapping address requests may result in incomplete moves. 

127 



DISCOVER FORTH 

COMPILE COMPILE 

When a word containing COMPILE executes, the 16-bit number 

following the compilation address of COMPILE is copied into the 

dictionary. Thus, COMPILE CMOVE will copy the compilation 
address of CMOVE. 

CONSTANT N CONSTANT <NAME> 

Defines a constant with the value (n) and name specified. Afterward, 

whenever the name is executed, the value (n) will be left on the stack. 

CONTEXT CONTEXT addr 

Leaves the address of the variable that specifies the vocabulary in 

which the dictionary searches for matching words. 

CONVERT dladdrl CONVERT d2addr2 

The text beginning at addrl + 1 is converted to the equivalent stack 

number with regard to BASE. The new value is accumulated into the 

double number d 1 and left on the stack as d2. The address of the first 

non-convertible character is addr2. 

COUNT addr COUNT addr+1 n 

Leaves the address addr+1 on the stack along with the character count 

(n) of the text beginning at addr. N may vary from 0 to 255. The first 

byte of addr must contain n. 

CR CR 

Produces a carriage return and line feed on the current output device. 

CREATE CREATE <NAME> 

Creates a dictionary entry for <NAME> without allocating any 

parameter field memory for <NAME>s. When<NAME> is later 

executed, the address of the parameter field associated with that word 

is left on the stack. 

CURRENT CURRENT addr 

Leaves the address of the variable that specifies the vocabulary into 

which new word definitions are being added. 

D+ dl d2 D+ d3 

Adds dl to d2. 

D< dl d2 D< flag 

Leaves a “true” value if dl is less than d2 — otherwise “false.” 

128 



APPENDIX B 

DECIMAL DECIMAL 

Changes the current base to decimal. 

DEFINITIONS DEFINITIONS 

Sets CURRENT to the CONTEXT vocabulary. All new definitions 

are then created in the vocabulary selected as CONTEXT. 

DEPTH DEPTH n 

Leaves the number of elements that were on the data stack before the 

word DEPTEl executed. 

DNEGATE dl DNEGATE -dl 

Leaves the two’s complement of d 1 on the stack. 

DO nl n2 DO <TEXT> 

Begins an indexed loop that begins counting at n2 and is terminated 

when the index value equals nl. Must be used in a colon definition. 

DOES> : <NAME> CREATE <TEXT> DOES> ; 

Marks the termination of the defining portion of a CREATE sequence. 

DROP n DROP 

Drops the top number from the stack. 

DUP nDUPnn 

Duplicates the top number on the stack. 

ELSE IF <TEXT1> ELSE <TEXT2> THEN 

Used to force conditional execution of <TEXT2> when entry into the 

IF function is “false.” Must be used in a colon definition. It has no 

effect on the stack. 

EMIT char EMIT 

Transfers the character to the current output device. 

EMPTY-BUFFERS EMPTY-BUFFERS 

Marks all buffers as empty and ready for reuse. Nothing is changed 

within the buffer, although blocks that have been marked by UPDATE 

are not written back to disk. 

EXECUTE addrEXECUTE 

Executes the dictionary entry whose compilation address is on the 

stack. 

129 



DISCOVER FORTH 

EXIT EXIT 

Used within a colon definition to terminate execution of that 
definition. May not be used within a DO loop. 

EXPECT addrn EXPECT 

Transfers characters from the terminal to memory beginning at addr 

until a carriage return or the number of characters specified (n) has 
been received. 

FILL addr n byte FILL 

Fills memory beginning at addr with a sequence of n copies of byte. If 

the quantity n is less than or equal to zero, no action is taken. 

FIND FIND <NAME> addr 

Leaves the address of the next word on the stack. If the word 

<NAME> is not found, the stack gets a zero. 

FORGET FORGET <NAME> 

Causes <NAME> to be deleted from the dictionary, as well as all 
words added to the dictionary after <NAME>. 

FORTH FORTH 

FORTH is the name of the primary vocabulary. 

HERE HERE addr 

Leaves the address of the next available dictionary location on the 
stack. 

HOLD char HOLD 

Inserts char into a pictured numeric output sequence. May be used 
only between <# and #>. 

I I n 

Copies the loop index value of the outermost loop and leaves it on the 
stack. May be used only within a DO loop. 

IF flag IF <TYPE1> ELSE <TYPE2> THEN 

If “true,” <TYPEI> executes; if “false,” <TYPE2> executes. “ELSE 

<TYPE2>” may be omitted if you desire execution only on true. 

IMMEDIATE IMMEDIATE 

Marks the most recently made dictionary entry as a word that is 

executed within colon definitions rather than being compiled. 

130 



APPENDIX B 

J J n 

Leaves the loop-index value of the next-outer loop on the stack. Ma\ 

be used only within an embedded DO loop. 

key KEY char 

Leaves the ASCII value of the next available character from the 

current input device. 

LEAVE LEAVE 

Forces an early exit from a DO loop by setting the loop limit equal to 

the current value of the index. The index itself remains unchanged. 

LIST n LIST 

Displays in ASCII the contents of screen n and changes the variable 

SCR to contain n. 

LITERAL n LITERAL 

Complies n into a definition, so that when the word defined later 

executes, n is left on the stack. 

LOAD n LOAD 

Begins input of screen n. Each character encountered while loading 

information will be interpreted in the same manner as if it were being 

typed at the console. 

LOOP 
Increments the DO loop index by L terminating the loop if the new 

index is equal to or greater than the index. 

MAX nl n2 MAX n3 

Leaves the greater of two numbers on the stack. 

MIN nl n2 MIN n3 

Leaves the lesser of two numbers on the stack. 

MOD nl n2 MOD n3 

Divides nl by n2, and leaves the remainder (n3) on the stack with the 

same sign as nl. 

MOVE addrl addr2 n MOVE 

Moves the number (n) of 16-bit memory elements from memory 

beginning at addrl to memory beginning at addr2. If n is less than or 

equal to zero, nothing is moved. 

NEGATE n NEGATE -n 

Leaves the two’s complement of n (0 minus n) on the stack. 

131 



DISCOVER FORTH 

NOT flagl NOT flag2 

Reverses the Boolean value of the flag on the stack. Identical in 
operation to 0=. 

OR nl n2 OR n3 

Performs a bit-wise inclusive-OR of the two numbers specified and 
leaves the result on the stack. 

OVER nl n2 OVER nl n2 nl 

Duplicates the second element on the stack, in effect, making it both 
the first and third element on the stack. 

PAD PAD addr 

Leaves the starting address of a 64-byte scratch pad area on the stack. 
Often used to “buffer" user input before processing. 

PICK nl PICK n2 

Duplicates the contents of the nl-th stack value (not counting nl, 
itself) and leaves it as the top element on the stack. 

QUERY QUERY 

Accepts up to 80 characters (or all characters up to a carriage return if 

less than 80) and places them into a terminal input buffer. WORD can 

then be used to pick off characters from this buffer. 

QUIT QUIT 

Clears the return stack, sets execution mode, and returns control to 

the terminal. No message is given (that is, no “OK” is displayed). 

R> R> n 

Transfers a value from the return stack to the data 

R@ R@ n 

Copies the number on the top of the return stack to the data stack. 

REPEAT 

Used within a colon-definition which contains a BEGIN-REPEAT 
loop. 

ROLL n ROLL 

Moves the n-th element on the stack to the top position and adjusts the 
remaining elements accordingly. 

ROT nl n2n3ROTn2 n3 nl 

Rotates the top three elements on the stack so that the bottom-most 

becomes the new top element with the others moved down one 
position. 

132 



APPENDIX B 

SAVE-BUFFERS SAFE-BUFFERS 

Writes all blocks to mass storage which have been flagged as 

UPDATEd. An error results if the write to mass storage is not 

completed. 

SCR SCR addr 

Leaves the address of the variable which contains the screen most 

recently used (that is, the screen that was most recently listed or 

fetched). 

SIGN n SIGN 

Inserts the ASCII code for (minus sign) into the pictured numeric 

output string, if the number specified is negative. 

SPACE SPACE 

Transmits an ASCII “blank” to the current output device. 

SPACES n SPACES 

Transmits n ASCII “blanks” to the current output device. 

STATE STATE addr 

Leaves the address of the variable which contains the compilation state 

on the stack. 

SWAP nl n2 SWAP n2 nl 

Exchanges the top two elements on the stack. 

THEN 
Used within a colon definition, THEN is the point where execution 

resumes after ELSE or IF. 

TYPE addr n TYPE 

Transmits n characters from memory beginning at addr to the output 

device. 

U* uni un2 U* ud3 

Multiplies two unsigned numbers and leaves the result as an unsigned 

double number (ud3) on the stack. 

U. un U. 

Displays the unsigned number (un) in the current base on the console 

display, with one trailing blank following the free-formatted number. 

U/MOD udl ud2 U/MOD un3 un4 

Divides the first unsigned double number by the second and leaves the 

remainder and quotient as unsigned single numbers on the stack. 

133 



DISCOVER FORTH 

U< uni un2 U< flag 

Compares the two unsigned numbers and leaves a flag representing the 
“truth” of the statement “uni < un2” on the stack. 

UNTIL flag UNTIL 

Used within a colon definition to terminate a BEGIN loop. If flag is 
true, the loop terminates. 

UPDATE UPDATE 

Marks the most recently referenced block as having been modified. 

Should the memory buffer the block occupies be needed for storage of 

another block, UPDATE tells FORTH that the memory buffer should 
be saved onto diskette. 

VARIABLE VARIABLE <NAME> 

Defines an entry for a variable with the name specified. 

VOCABULARY VOCABULARY <NAME> 

Defines an entry for an ordered list of word definitions. Used in 

conjunction with CURRENT and CONTEXT vocabulary. 

WH,LE BEGIN... flag WHILE ... REPEAT 

Used within a colon definition to termine a BEGIN loop. 

WORD char WORD addr 

Receives characters from the input stream until the delimited 

character char is encountered or the input stream is exhausted. 

XOR nl n2 XOR n3 

Leaves the bitwise exclusive OR of nl and n2. 

f 1 

Ends the compilation mode and begins execution of text from the 
input stream. 

[COMPILE [COMPILE] <NAME> 

Used within a colon definition to force compilation of the named word. 

This allows for compilation of an IMMEDIATE word when it would 
otherwise be executed. 

1 1 
Restarts the compilation mode and begins compiling all subsequent 
text from the input stream (see [, above). 

134 



APPENDIX B 

Required Word Set 

Nucleus Words 

1 2- DNEGATE 

* < DROP 

*/ = DUP 

’/MOD > EXECUTE 

+ >R EXIT 

+! ?DUP FILL 

- @ 1 

/ ABS J 

/MOD AND LEAVE 

0< C! MAX 

0= C@ MIN 

o> CMOVE MOD 

1 + D+ MOVE 

1- D< NEGATE 

2+ DEPTH NOT 

Interpreter Words 

# >IN CURRENT 

#> ? DECIMAL 

#S ABORT EMIT 

- BASE EXPECT 

( BLK FIND 

-TRAILING CONTEXT FORTH 

CONVERT HERE 

79-STANDARD COUNT HOLD 

<# CR KEY 

Compiler Words 

+LOOP CONSTANT IMMEDIATE 

CREATE LITERAL 
" DEFINITIONS LOOP 

DO REPEAT 

DOES> STATE 

ALLOT ELSE THEN 

BEGIN FORGET UNTIL 

COMPILE IF VARIABLE 

Device Words 

BLOCK EMPTY-BUFFERS LOAD 
BUFFER LIST SAVE-BUFFERS 

OR 
OVER 
PICK 

R> 
R@ 
ROLL 
ROT 

SWAP 

U* 

U/ 

U< 
XOR 

PAD 
QUERY 
QUIT 

SIGN 
SPACE 
SPACES 
TYPE 

U. 
WORD 

VOCABULARY 

WHILE 

[ 
[COMPILE] 

] 

SCR 
UPDATE 

135 



Appendix C 

A.5CII ^tJvI 1 » 

Decimal Coded Decimal Coded Decimal Coded Decimal Coded 
Number Character Number Character Number Character Number Character 

0 32 Space 64 @ 96 l 

1 “A 33 ! 65 A 97 a 
2 “B 34 " 66 B 98 b 
3 C 35 # 67 C 99 c 
4 "D 36 $ 68 D 100 d 
5 "E 37 % 69 E 101 e 
6 "F 38 & 70 F 102 f 
7 * G 39 t 

71 G 103 g 
8 ~H 40 ( 72 H 104 h 
9 "1 41 ) 73 1 105 i 

10 *J 42 * 74 J 106 j 
11 K 43 + 75 K 107 k 
12 “L 44 - 76 L 108 1 
13 'M 45 - 77 M 109 m 
14 *N 46 78 N 110 n 
15 "0 47 / 79 0 111 o 
16 “P 48 0 80 P 112 p 
17 Q 49 1 81 Q 113 q 
18 "R 50 2 82 R 114 r 
19 "S 51 3 83 S 115 s 
20 "T 52 4 84 T 116 t 
21 U 53 5 85 U 117 u 
22 V 54 6 86 V 118 V 
23 w 55 7 87 W 119 w 
24 "X 56 8 88 X 120 X 
25 * Y 57 9 89 Y 121 V 
26 Z 58 90 Z 122 z 
27 Escape 59 91 [ 123 { 
28 FS 60 < 92 \ 124 1 
29 GS 61 = 93 ] 125 ) 
30 RS 62 > 94 * 126 
31 US 63 ? 95 <-- 127 DEL 

136 



Appendix D 

-Suggested Alternatives to the FORTH Syntax- 

while FORTH fanatics might complain about this statement, there is 

nothing sacred about the names given to each word defined in 

FORTH. And, since you can easily change the names of words at any 

time, you might consider “personalizing” your version of FORTH. 

The general format for redefining a word would be: 

:NEWNAME OLDNAME; 

This results in a bit of additional overhead. Another possible method: 

:NEWNAME 

STATE @ 

IF 
COMPILE OLDNAME 

ELSE 
OLDNAME 

THEN ; 
IMMEDIATE 

Some suggested changes follow: 

change 

FORTH COBOL Style 

J to STORE 

C! to STORE-BYTE 

@ to FETCH 

C@ to FETCH-BYTE 

to DISPLAY 
// to DISPLAY-TEXT or just 

;S to STOP-LOADING* 

CMOVE to MOVE-BYTES 

MOD to MODULO 

SCR to SCREEN 

SP! to INIT-STACK 

SP@ to FETCH-POINTER 

VLIST to LIST-WORDS 

ROT to ROTATE 

DUP to DUPLICATE 

CODE to ASSEMBLY 

END-CODE to END-ASSEMBLY 

Again, these are only suggestions. There are pluses and minuses to 

changing the given names of FORTH words. If you think that such 

changes will help you learn FORTH more quickly, go ahead and make 

the changes. You can always change everything back later. 

*It would be {EXIT} in FORTH-79. See Appendix B. 

137 



-Appendix E-- 

---Error Messages--- 

The error messages for some FORTH systems reside on block 0 and 

block 1 on the FORTH diskette. Since these blocks are changeable, 

just like any FORTH block, you may wish to change the messages to 

suit you. The error messages in FIG-FORTH look like the following: 

ERROR 
NUMBER MESSAGE 

0 (ERROR MESSAGES) 
1 EMPTY STACK 

2 DICTIONARY FULL 
3 HAS INCORRECT ADDRESS MODE 
4 ISN'T UNIQUE 

5 

6 DISC RANGE ? 
7 FULL STACK 
8 DISC ERROR ! 
9 

10 

11 

12 

13 

14 

15 FORTH INTEREST GROUP 
16 (ERROR MESSAGES) 
17 COMPILATION ONLY, USE IN DEFINITION 
18 EXECUTION ONLY 
19 CONDITIONALS NOT PAIRED 
20 DEFINITION NOT FINISHED 
21 IN PROTECTED DICTIONARY 
22 USE ONLY WHEN LOADING 
23 OFF CURRENT EDITING SCREEN 
24 DECLARE VOCABULARY 
25 

26 

27 

28 

29 

30 

31 

138 



APPENDIX E 

Most other versions of FORTH modify these slightly, leaving the same 

intent for each message, but wording the messages so that they are 

clearly comprehensible. 

0 Mythical FORTH Version 1-1 

1 The stack is empty. 

2 The dictionary is full 

3 has incorrect address mode. 

4 isn't unique 

5 An obscure error of the fifth kind has occurred. 

6 Illegal block number requested. 

7 The stack is full. 

8 

9 

10 

11 

12 CP/M Error — Seek to unwritten extent. 

13 CP/M Error — Directory overflow. 

14 CP/M Error — Seek past physical end of disk. 

15 

16 Second System Message Screen 

17 is legal only within a colon definition. 

18 is not legal within a colon definition. 

19 The expression contains unpaired conditionals. 

20 The definition has not been finished. 

21 is within the protected dictionary. 

22 should only be used while loading. 

23 Off current editing screen. 

24 Please declare a vocabulary. 

25 The current file is closed. Please OPEN a file. 

26 Binary Data — Cannot be displayed directly. 

27 JanFebMarAprMayJunJulAugSepOctNovDecMonTueWedThuFriSatSun 

28 

29 

30 

31 

NOTE: Since each error message takes up 64 characters whether you 

need that many or not, it doesn’t make any sense to create cryptic or 

abbreviated messages (unless, of course, you like cryptic or abbreviated 

error messages). 

139 



-Appendix F- 

Some FORTH Extensions 

As explained in the main text of this book, FORTH is an extensible 

language. You may add any feature you think the language may be 
lacking. 

-CASE Structure- 

The Pascal {CASE} statement is useful for directing program execution 

to one of several sections of code, dependent upon the value of a 

variable. In FORTH, the value of the top element on the stack will 

point to the section of code to be executed when the {CASE} function is 

executed. 

4 (value on stack) 
CASE 

1 OF do-first-thing ENDOF 
2 OF do-second-thing ENDOF 
3 OF do-third-thing ENDOF 
4 OF do-fourth-thing ENDOF 

do-otherwise-things 
ENDCASE 

In the above example, since “4” was the value upon execution of 

{CASE}, only FORTH {do-fourth-thing} would be executed. If the 

value had been “2,” only {do-second-thing} would have been executed. 

If the value had not been “1,” “2,” “3,” or “4,” {do-otherwise-things} 

would have been executed. 

Here’s the coding needed to add {CASE}, {OF}, {ENDCASE}, and 

{ENDOF} to your version of FORTH. NOTE: The following code has 

only been tested using FIG-FORTH, but should work with most 

“standard” FORTHs. 

:CASE (Execute Code Based On Stack Value) 
?COMP CSP @ !CSP 4 ; 

IMMEDIATE 
: OF 

4 7PAIRS COMPILE 
OVER COMPILE 
= COMPILE 

OBRANCHHEREO , COMPILE 
DROP 5; 

IMMEDIATE 

140 



APPENDIX F 

:ENDOF 
5 7PAIRS COMPILE 
BRANCH HERE 0 ,SWAP 2 

[COMPILE] THEN 
4 ; 

IMMEDIATE 
:ENDCASE 

4 7PAIRS COMPILE 

DROP 
BEGIN 

SP@ CSP @ = 
0 = WHILE 

2 [COMPILE] 
THEN 

REPEAT 

CSP !; 
IMMEDIATE 

-Extension Word Sets- 

1 Double Number Word Set 

2! d addr — 

Store d in four consecutive bytes beginning at addr, as for a double 

number. Pronounce two-store. 

2@ addr — d 

Leave on the stack the contents of the four consecutive bytes beginning 

at addr, as for a double number. Pronounce two-fetch. 

2CONSTANT d - 

A defining word used in the form: d 2CONSTANT <name> to 

create a dictionary entry for <name>, leaving d in its parameter field. 

When <name> is later executed, d will be left on the stack. Pronounce 

two-constant. 

2DROP d - 

Drop the top double number on the stack. Pronounce two-drop. 

2DUP d - d d 

Duplicate the top double number on the stack. Pronounce two-dup. 

141 



DISCOVER FORTH 

20VER dl d2 - dl d2 dl 

Leave a copy of the second double number on the stack. Pronounce 

two-over. 

2ROT dl d2 d3 — d2 d3 dl 

Rotate the third double number to the top of the stack. Pronounce 

two-rote. 

2SWAP dl d2 - d2 dl 

Exchange the top two double numbers on the stack. Pronounce two- 

swap. 

2VARIABLE 

A defining word used in the form: 2VARIABLE <name> to 

create a dictionary entry of <name> and assign four bytes for storage 

in the parameter field. When <name> is later executed, it will leave the 

address of the first byte of its parameter field on the stack. Pronounce 

two-variable. 

D+ dl d2 — d3 241 

Leave the arithmetic sum of dl and d2. Pronounce d-plus. 

D- dl d2 — d3 

Subtract d2 from d 1 and leave the difference d3. Pronounce d-minus. 

D. d - 129 

Display d converted according to BASE in a free-field format, with one 

trailing blank. Display the sign only if negative. Pronounce d-dot. 

D.R d n — 

Display d converted according to BASE, right aligned in an n 

character field. Display the sign only if negative. Pronounce d-dot-r. 

D0= d — flag 

Leave true if d is zero. Pronounce d-zero-equals. 

D< dl d2 — flag 244 

True if d 1 is less than d2. Pronounce d-less. 

D= dl d2 - flag 

True if dl equals d2. Pronounce d-equal. 

142 



APPENDIX F 

DABS dl - d2 

Leave as a positive double number d2, the absolute value of a double 

number, dl. {0..2,147,483,647}. Pronounce d-abs. 

DMAX dl d2 — d3 

Leave the larger of two double numbers. Pronounce d-max. 

DMIN dl d2 — d3 

Leave the smaller of two double numbers. Pronounce d-min. 

DNEGATE d - -d 

Leave the double number two’s complement of a double number, that 

is, the difference 0 less d. Pronounce d-negate. 

DU< udl ud2 - flag 

True if udl is less than ud2. Both numbers are unsigned. Pronounce 

d-u-less. 

2 Assembler Word Set 

;CODE C,l,206 

Used in the form: : <name> . . . ;CODE Stop compilation 

and terminate a defining word <name>. ASSEMBLER becomes the 

CONTEXT vocabulary. When <name> is executed in the form: 

<name> <namex> to define the new <namex>, the execution 

address of<namex> will contain the address of the code sequence 

following the ;CODE in <name>. Execution of any <namt x> will 

cause this machine code sequence to be executed. Pronounce semi¬ 

colon code. 

ASSEMBLER 1,166 

Select assembler as the CONTEXT vocabulary. 

CODE 111 

A defining word used in the form: CODE <name> . . . 

END-CODE to create a dictionary entry for <name> to be defined 

by a following sequence of assembly language words. ASSEMBLER 

becomes the context vocabulary. 

END-CODE 

Terminate a code definition, resetting the CONTEXT vocabulary to 

the CURRENT vocabulary. If no errors have occurred, the code 

definition is made available for use. 

143 



Index 

Algebraic expressions, 34 — 36, 40 
Arithmetic functions ( + , —, /), 

25,28,31,34-37,40, 
48-50, 81-84, 85 

Arrays, 20 
ASCII, 26, 30,45-47,56, 74 
Blocks, 101-03 

loading, 104 
Boolean values, 26, 78 — 80, 84, 

92-93 
Buffers, 101 

clearing, 105 
saving, 105 

Coding sheet, 122 
Colon definitions, 57 — 58, 59, 88, 

109-13 
Comments, 109—13 
Compilation, 6, 7, 8, 57 
Conditional execution, 79, 

92 — 94. See also Loops 
Constants, 64 — 66, 75 
Decrement, 81, 84 
Error messages, 102 — 04, 138 
Extensions, 140 
Dictionary, 12 — 15, 62 
Disk access, 101 
Fixed-point arithmetic, 81, 83 
Flags. See Boolean values 
FORTH, Inc., 5, 9 
FORTH Interest Group (FIG), 1, 

2,5,9,62 
FORTH programs 

extensibility, 119 
modification of, 118 
redefining words, 119 
transportability, 118 

FORTH-79,2,9, 123 
FORTH syntax, alternatives to, 

137 
FORTH words, 12-15,25, 

56-59, 62-66, 123-35 

AGAIN, 94, 96 

BEGIN, 94-95,96, 127 
BL (Blank), 66, 75 
BLK, 105 
BLOCK, 104, 127 
BS (Backspace), 66, 75 
BYE, 94 
CASE, 95,97, 140 
CDUMP, 67,70-71,72,75 
CLIST. See VLIST 
CMOVE 67-69, 72, 75 
COLD, 94 
C@ (C-fetch), 73, 75, 127 
C! (C-fetch), 73, 75, 127 
DLIST. See VLIST 
DO, 88-91, 96, 129 
DROP, 27,30, 31, 129 
DUP (duplicate), 21,27, 31, 51, 

53,57, 129 
D. (D-dot), 45 
D+ (D-plus), 38, 41, 128 
D— (D-minus), 38, 41 
ELSE, 92-93,96, 129 
EMIT, 30, 31,47, 53,98, 129 
EMPTY-BUFFERS, 105 
ENDIF, 92-93,96 
ERASE, 67, 70, 72, 75 
EXPECT, 98-99, 105, 130 
FILL, 67,69-70,72,75, 130 
FLO AD (F-load), 7 
FORGET, 58, 59, 130 
I (index), 89, 96, 130 
IF, 92-93,96, 130 
INDEX, 109-10 
KEY, 46, 47, 53,56, 98,131 
LIST,110 
LOOP, 88-91,96, 131 
MESSAGE, 104 
MOD, 83-84, 85, 131 
M* (M-times), 39, 41 
M/,39,41 

144 



FORTH words (continued) 

OVER, 28,31, 132 
ROT, 51 -52, 53, 132 
R# (R-sharp), 3 
SAVE-BUFFERS, 105, 133 
SCR (screen), 66, 75, 133 
SP@ (SP-fetch),29, 30, 31 
SWAP, 27,31, 133 
SO,30,66 
THEN, 92-93, 96, 133 
TYPE, 67,70, 74,75, 133 
UCASE, 3 
UNTIL, 95,96, 134 
UPDATE, 104-05, 134 
VLIST, 58, 59 
WHILE, 95,96, 134 
ZDUP, 28,31,51,53 
2! (Two-store), 73, 74, 75 
2@ (Two-fetch), 73, 75 
+ LOOP, 91-92,96 
+ !, 81 
?, 72 
© (Fetch), 13,30, 63,64,72,75 
! (Store), 3, 63, 64, 73,75, 123 
. (Dot), 30, 31,44,45,98 
.R (Dot-R), 52, 53 
, (Tick), 65 

Increment, 81, 84, 91 — 92, 96 
Input/output ports, 100 
Interpreter, 6, 8 
Linking, 12 

Logical operations, 78 
Logical tests, 79 — 80, 84 
Loops, 88 — 96 
Modulo arithmetic, 83 
Numbers 

signed, 22, 26, 31 
unsigned, 22, 26, 31 
fixed point, 81 — 84 
double, 28, 31, 34 — 38, 41 
mixed, 39 — 40, 41 

Pages, 108 
linked, 112 

Ports, 100 
Post-fix notation, 8, 34 — 41 
Recursion, 20 
Reverse Polish notation. See 

Post-fix notation 
;S (Stop loading information), 114 
Screen, 108 
Shorthand arithmetic, 80 — 81 
Source code, 109 
Stack, 8, 18-31,43,44 
Syntax, alternatives to, 137 
Terminal functions, 99 
Tests, 79 — 80 
Top-down programming, 114—16 
Variables, 18, 19, 21, 62 — 64, 

65-66, 75 
Virtual memory, 101 
Words. See FORTH words 

145 



v DISCOVER 

FORTH 
Thom ttogcm 

Long considered a computer language of building blocks, 

FORTH has been optimized for speed and requires little com¬ 

puter support. Whether you are a beginner seeking informa¬ 

tion on this multi-faceted programming language or a serious 

programmer already using FORTH, this book is a reference 
that should not be overlooked. 

The text describes FORTH syntax, specifically applicable to 

both FORTH-79 and FIG-FORTH. Included are notes on logi¬ 

cal extensions and alternatives to the standard FORTH syntax. 

Hogan explains the history and uses of FORTH and provides a 

tightly structured synthesis of material from programming 

manuals, independent programmers, and the publications of 

the FORTH Interest Group. Many of his observations come 

from his own extensive use of FORTH in a major software 
project. 

ISBN 0-931988-79-9 Mi 


